

Data Brief PTX105R NFC Reader IC

Product Description

The PTX105R is a highly integrated NFC reader IC for contactless communication, which is optimized for reader performance and interoperability (Vcc current up to 500mA). While eliminating EMC filter and matching components, the PTX105R enables simple integration and compact design without the complexity associated with existing solutions (dual resonating circuits composed by EMC filter and antenna).

Due to its modular Soft Controller architecture, the NFC functionalities are integrated into a split stack solution where time-critical operations are running on the on-chip MCU, and the rest of the NFC logic is in the host controller to carry out applications such as IOT reader and POS.

Features

The architecture enables:

- Efficient power transmission with accurate digital programmability of RF carrier and modulation shape
- EMC filter removal due to sinewave output driver and Direct Antenna Connection (DiRAC)
- -80dBc RX sensitivity with full dynamic range due to DiRAC
- SDK composed of FW and SW integrated in a Split Stack architecture with Over-The-Air firmware update on the host processor:
 - Modular SW stack running on the Host architecture
 - Integrated FW running on the on-chip MCU for timing critical operations

- Fractional-N PLL to support any reference input clock frequency from 13.15MHz to 52MHz
- Low Power Card Detection (LPCD)
- ISO/IEC14443-A reader/writer mode up to 848kBit/s
- ISO/IEC14443-B reader/writer mode up to 848kBit/s
- NFC Forum Poller mode
- Supports reading of NFC Tag Type 2, 3, 4A/4B and 5
- FeliCa reader/writer mode 212&424kBit/s
- ISO/IEC 15693 reader/writer mode
- NFC Forum P2P Passive Initiator
- NFC Card Emulation Mode for Tag Type 4A (106kBit/s)
- Low Power Field Detection (LPFD)
- EMVCo® 3.0/3.1 PCD L1 compliancy¹
- Supported host interfaces: I2C, SPI, UART

PTX105R reader IC enables key improvements in customer care-about such as:

RF performance: Patented groundbreaking architecture enables efficient transmission and -80dBc RX sensitivity, state of the art reader performance even in challenging and complex integration environments.

Interoperability:

- Digitized architecture enables accurate shape control of the modulated signal.
- Elimination of the EMC filter results in wellbehaved signal shape avoiding overshoot and undershoot
- DiRAC allows minimum output power loss on matching structure with high input sensitivity, which translates to substantially larger operating volume.

 $^{^{1}}$ Depending on the Software Stack, full NFC Forum Poller functionality or EMVCo® L1 is supported by PTX105R.

Manufacturability:

- No need for bulky and performancelimiting external components of the EMC filter (no tolerances issue introduced) minimizing the performance variation between final devices.
- Reduced number of matching components allow lower antenna matching impedance, resulting in higher output power.
- Accurate adjustment of transmitter and receiver parameters due to digital architecture enabling tighter production control giving more margin for new use cases.

PTX105R is optimized for applications such as IoT Reader, Access Control, Gaming, Transportation, Wearables, POS etc.

Enabling NFC applications and simplifying connectivity in EMVCo, IoT, Wireless Charging and Mobile by a unique Universal Reader Technology

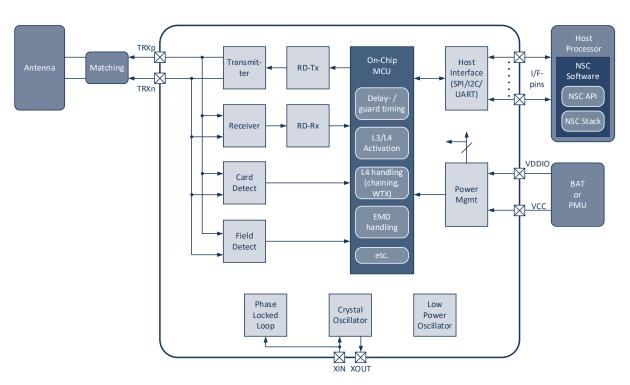


Figure 1: PTX105R Block Diagram

1 Pinning Information

1.1 Pin Diagram

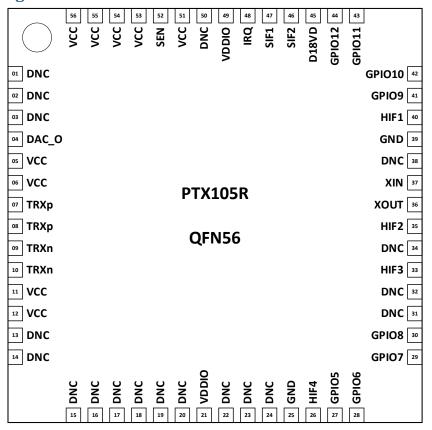


Figure 2: Pin Diagram

1.2 Pin Description

Signal Name	Signal Type	QFN56 Pin	Description	
DNC	-	1	Do not connect	
DNC	•	2 Do not connect		
DNC	•	3	Do not connect	
DAC_O	Analog out	4	AUX-DAC output voltage	
VCC	Supply	5	NFC IC supply	
VCC	Supply	6	NFC IC supply	
TRXp	Analog inout	7	Transmitter/Receiver pin p	
TRXp	Analog inout	8	Transmitter/Receiver pin p	
TRXn	Analog inout	9	Transmitter/Receiver pin n	
TRXn	Analog inout	10	Transmitter/Receiver pin n	
VCC	Supply	11	NFC IC supply	
VCC	Supply	12	NFC IC supply	
DNC	-	13	Do not connect	
DNC	-	14	Do not connect	
DNC	-	15	Do not connect	
DNC	•	16	Do not connect	
DNC	-	17	Do not connect	
DNC	-	18	Do not connect	
DNC	-	19	Do not connect	
DNC	•	20	Do not connect	
VDDIO	Supply	21	IO Pad supply	

Enabling NFC applications and simplifying connectivity in EMVCo, IoT, Panthronics Wireless Charging and Mobile by a unique Universal Reader Technology

DNC	-	22	Do not connect	
DNC	-	23	Do not connect	
DNC	-	24	Do not connect	
GND	Supply	25	Ground	
HIF4	Digital inout	26	SPI: MISO, I2C: SCL, UART: TXD	
GPIO5	Digital inout	27	·	
GPIO6	Digital inout	28	General purpose digital IO pin	
GPIO7	Digital inout	29	General purpose digital IO pin	
GPIO8	Digital inout	30	General purpose digital IO pin	
DNC	-	31	Do not connect	
DNC	-	32	Do not connect	
HIF3	Digital inout	33	SPI: MOSI, I2C: SDA, UART: RXD	
DNC	-	34	Do not connect	
HIF2	Digital inout	35	SPI: SCK, I2C: ADDR1, UART: RTS	
XOUT	Analog out	36	Xtal oscillator output	
XIN	Analog in	37	Xtal oscillator input / Reference clock input	
DNC	-	38	Do not connect	
GND	Supply	39	Ground	
HIF1	Digital inout	40	SPI: NSS, I2C: ADDR0, UART: CTS	
GPIO9	Digital inout	41	General purpose digital IO pin	
GPIO10	Digital inout	42	General purpose digital IO pin	
GPIO11	Digital inout	43	General purpose digital IO pin	
GPIO12	Digital inout	44	General purpose digital IO pin	
D18VD	Supply	45	Decoupling of core supply	
SIF2	Digital in	46	Select interface type bit 2	
SIF1	Digital in	47	Select interface type bit 1	
IRQ	Digital out	48	Interrupt request to host	
VDDIO	Supply	49		
DNC	-	50	Do not connect	
VCC	Supply	51	NFC IC supply	
SEN	Analog in	52	System enable input	
VCC	Supply	53	NFC IC supply	
VCC	Supply	54	NFC IC supply	
VCC	Supply	55	NFC IC supply	
VCC	Supply	56	NFC IC supply	
GND	Supply	-	The exposed pad at the back of QFN is used as GND Requires good thermal connection to ensure low thermal resistance for power dissipation	

Table 1: Pin Description

2 Functional Description

2.1 System Architecture

PTX105R is a highly integrated reader IC using a split-stack SW architecture, allowing flexible adaption of SW to the needs of the application system such as IoT/NFC Reader, POS etc. This flexibility is achieved by an optimized software interface and ready to use SW-stack for the host-controller. The portable SW stack written in C, implements high level NFC functionality and provides easy to use APIs for integration into the Host system.

The PTX solution is modular and runs on different platforms, providing additional facilities for custom features in case needed.

2.2 Power Management

The power management unit is the central circuit of the PTX105R responsible for providing all necessary reference voltages and currents, generating the internal supply domains, implementing the power-up sequence, and controlling the transitions between different energy states. PTX105R has 3 externally accessible supply domains: VCC, D18VD and VDDIO.

To support the implementation of flexible system power consumption profiles, PTX105R offers different energy states such as Full-Power mode as main operating mode, Power Down mode with maximum power saving on PTX105R as well as standby mode for low power applications.

2.3 Clock Concept

In PTX105R a low-power oscillator (LPO), a crystal oscillator (XO) and a phase-locked loop (PLL) are the main blocks responsible for generating the necessary internal clocks in the various modes.

The reference clock for PTX105R can either be provided from an external clock source or the internal crystal oscillator can be employed. Out of this clock, the PLL subsequently derives the system frequency of 13.56MHz.

2.4 Contactless Interface

PTX105R device has an innovative and patented architecture for the NFC-RF-System in place, that improves performance compared to conventional NFC architectures. Both transmitter and receiver, follow new approaches to bring NFC to the next performance level.

2.5 Host Interface

PTX105R supports the most used industry standard host interfaces, namely SPI, I2C and UART.

The host interface is designed for typical interface supply voltages used by micro-controllers in the range of 1.8V to 5V which must be supplied by the host via the VDDIO pin.

2.6 SW Split Stack

Panthronics provides additional SW-stacks to further ease the integration of the PTX105R into the target application. The SW stacks manage all interactions with the PTX105R, by setting up and configuring the device, consolidating status information, handling error messages, and establishing a data channel between the host and the NFC controller.

3 Reference Schematic

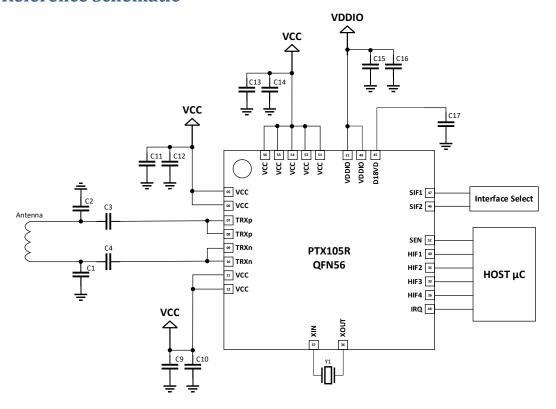


Figure 3: Exemplary Reference Schematic

Designator	Component type	Component value	Description
C1, C2, C3, C4	Ceramic capacitor, COG type	-	Matching capacitors
C9, C11, C13	Ceramic capacitor, COG type	10μF	Note that capacitor shall have at least 2.2µF effective capacitance at applied voltage
C10, C12, C14, C15, C17	Ceramic capacitor, COG type	100nF	
C16	Ceramic capacitor, COG type	10μF	Optional, depending upon VDDIO supply noise/impedance
Y1	Crystal oscillator	27.12MHz	According to Crystal Requirements in PTX105R Datasheet

Table 2 Reference Schematic Components

4 Package Information

4.1 Package Marking

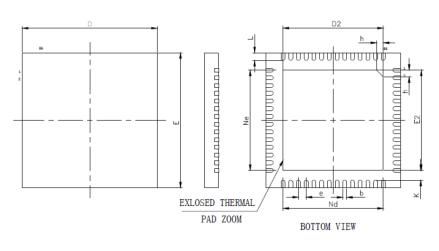


Figure 4 Package Marking Drawing

Symbol	Description	
PTX105R	Device Name	
XXXXXX.X	Wafer Lot No.	
YYWW	Production year/week	

Table 3 Marking Code HVQFN56

4.2 Package Drawing and Dimension

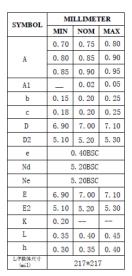


Figure 5: Package Drawings and Dimensions

5 Copyrights & Disclaimer

The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. Devices sold by Panthronics AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. Panthronics AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein.

Panthronics AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Panthronics AG for the most up to date information. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are not recommended. This product is provided by Panthronics AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed. Panthronics AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein.

Copyright Panthronics AG, Sternäckerweg 16, 8041, Graz

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for NFC/RFID Development Tools category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

WS02-CFSC1-EV3 V680-HAM91 MIKROE-3644 V700-L12 OM5579/PN7150RPI OM27160B1EVK M7E-TERA M7E-MEGA
MIKROE-2395 1482 MIKROE-2462 OM23221ARD 2800 2802 CLEV6630BM OM26630FDKM 2801 2803 PNEV5180BM 2804 360
361 362 3781 4032 4033 4034 4701 5402 UTC-510P-R01E COM-14325 CS-PROXMARKPRO01 DLP-RFID2P
DEVKITNAC1080TOBO1 DEVKITNGC1081TOBO1 EVALNLM0011DCTOBO1 U031-B EVB90109 MIKROE-3659 MIKROE-3971
MIKROE-4208 MIKROE-1434 MIKROE-1475 MIKROE-4309 MIKROE-5538 LXRFZZHAAA-028-KIT OM25180FDKM
OM27462CDKP OM27642DB OM27642EVK