

3.3V ZERO DELAY CLOCK MULTIPLIER

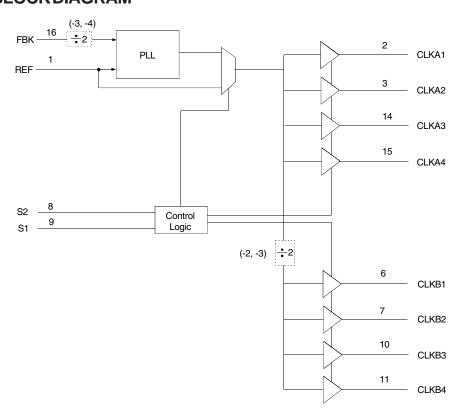
IDT2308A

FEATURES:

- Phase-Lock Loop Clock Distribution for Applications ranging from 10MHz to 133MHz operating frequency
- Distributes one clock input to two banks of four outputs
- · Separate output enable for each output bank
- External feedback (FBK) pin is used to synchronize the outputs to the clock input
- Output Skew <200 ps
- Low jitter <200 ps cycle-to-cycle
- 1x, 2x, 4x output options (see table):
 - IDT2308A-1 1x
 - IDT2308A-2 1x, 2x
 - IDT2308A-3 2x, 4x
 - IDT2308A-4 2x
 - IDT2308A-1H and -2H for High Drive
- · No external RC network required
- · Operates at 3.3V VDD
- · Available in SOIC and TSSOP packages

DESCRIPTION:

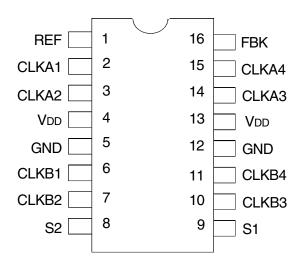
The IDT2308A is a high-speed phase-lock loop (PLL) clock multiplier. It is designed to address high-speed clock distribution and multiplication applications. The zero delay is achieved by aligning the phase between the incoming clock and the output clock, operable within the range of 10 to 133MHz.


The IDT2308A has two banks of four outputs each that are controlled via two select addresses. By proper selection of input addresses, both banks can be put in tri-state mode. In test mode, the PLL is turned off, and the input clock directly drives the outputs for system testing purposes. In the absence of an input clock, the IDT2308A enters power down. In this mode, the device will draw less than $12\mu A$ for Commercial Temperature range and less than $25\mu A$ for Industrial temperature range, and the outputs are tri-stated.

The IDT2308A is available in six unique configurations for both prescaling and multiplication of the Input REF Clock. (See available options table.)

The PLL is closed externally to provide more flexibility by allowing the user to control the delay between the input clock and the outputs.

 $\label{thm:commercial} The \, IDT 2308A \, is \, characterized \, for \, both \, Industrial \, and \, Commercial \, operation.$


FUNCTIONAL BLOCK DIAGRAM

COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

AUGUST 2012

PINCONFIGURATION

SOIC/ TSSOP TOP VIEW

PIN DESCRIPTION

	Pin Number	Functional Description
REF	1	Input Reference Clock, 5 Volt Tolerant Input
CLKA1 ⁽¹⁾	2	Clock Output for Bank A
CLKA2 ⁽¹⁾	3	Clock Output for Bank A
VDD	4	3.3V Supply
GND	5	Ground
CLKB1 ⁽¹⁾	6	Clock Output for Bank B
CLKB2 ⁽¹⁾	7	Clock Output for Bank B
S2 ⁽²⁾	8	Select Input, Bit 2
S1 ⁽²⁾	9	Select Input, Bit 1
CLKB3 ⁽¹⁾	10	Clock Output for Bank B
CLKB4 ⁽¹⁾	11	Clock Output for Bank B
GND	12	Ground
VDD	13	3.3V Supply
CLKA3 ⁽¹⁾	14	Clock Output for Bank A
CLKA4 ⁽¹⁾	15	Clock Output for Bank A
FBK	16	PLL Feedback Input

NOTES:

- 1. Weak pull down on all outputs.
- 2. Weak pull ups on these inputs.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Max.	Unit
VDD	Supply Voltage Range	-0.5 to +4.6	V
VI ⁽²⁾	Input Voltage Range (REF)	-0.5 to +5.5	V
Vı	Input Voltage Range	-0.5 to	V
	(except REF)	VDD+0.5	
IIK (VI < 0)	Input Clamp Current	-50	mA
lo	Continuous Output Current	±50	mA
(Vo = 0 to VDD)			
VDD or GND	Continuous Current	±100	mA
TA = 55°C	Maximum Power Dissipation	0.7	W
(in still air)(3)			
Tstg	Storage Temperature Range	-65 to +150	°C
Operating	CommercialTemperature	0 to +70	°C
Temperature	Range		
Operating	Industrial Temperature	-40 to +85	°C
Temperature	Range		

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

APPLICATIONS:

- SDRAM
- Telecom
- Datacom
- · PC Motherboards/Workstations
- · Critical Path Delay Designs

FUNCTION TABLE(1) SELECTINPUT DECODING

S2	S 1	CLK A	CLK B	Output Source	PLL Shut Down
L	L	Tri-State	Tri-State	PLL	Υ
L	Н	Driven	Tri-State	PLL	N
Н	L	Driven	Driven	REF	Υ
Н	Н	Driven	Driven	PLL	N

NOTE:

H = HIGH Voltage Level
 L = LOW Voltage Level

AVAILABLE OPTIONS FOR IDT2308A

Device	Feedback From	Bank A Frequency	Bank B Frequency
IDT2308A-1	Bank A or Bank B	Reference	Reference
IDT2308A-1H	Bank A or Bank B	Reference	Reference
IDT2308A-2	Bank A	Reference	Reference/2
IDT2308A-2	Bank B	2 x Reference	Reference
IDT2308A-2H	Bank A	Reference	Reference/2
IDT2308A-2H	Bank B	2 x Reference	Reference
IDT2308A-3	Bank A	2 x Reference	Reference or Reference (1)
IDT2308A-3	Bank B	4 x Reference	2 x Reference
IDT2308A-4	Bank A or Bank B	2 x Reference	2 x Reference

NOTE:

ZERO DELAY AND SKEW CONTROL

To close the feedback loop of the IDT2308A, the FBK pin can be driven from any of the eight available output pins. The output driving the FBK pin will be driving a total load of 7pF plus any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the input-output delay.

For applications requiring zero input-output delay, all outputs including the one providing feedback should be equally loaded. Ensure the outputs are loaded equally, for zero output-output skew.

^{1.} Output phase is indeterminant (0 $^{\circ}$ or 180 $^{\circ}$ from input clock).

OPERATING CONDITIONS-COMMERCIAL

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
VDD	Supply Voltage		3	3.6	V
TA	Operating Temperature (Ambient Temperature)		0	70	°C
CL	Load Capacitance below 100MHz		_	30	pF
	Load Capacitance from 100MHz to 133MHz		_	15	pF
CIN	Input Capacitance ⁽¹⁾		_	7	pF

NOTE:

DCELECTRICAL CHARACTERISTICS-COMMERCIAL

Symbol	Parameter	Conditi	ons	Min.	Typ. ⁽¹⁾	Max.	Unit
VIL	Input LOW Voltage Level			_	_	0.8	V
ViH	Input HIGH Voltage Level			2	_	_	V
lıL	Input LOW Current	VIN = 0V		_	_	50	μΑ
lін	Input HIGH Current	VIN = VDD		_	_	100	μA
Vol	Output LOW Voltage	IOL = 8mA (-1, -2, -3, -4)		_	_	0.4	V
		IoL = 12mA (-1H, -2H)					
Vон	Output HIGH Voltage	IOH = -8mA (-1, -2, -3, -4)	IOH = -8mA (-1, -2, -3, -4)		_	_	V
		loн = -12mA (-1H, -2H)					
IDD_PD	Power Down Current	REF = 0MHz (S2 = S1 = H)	REF = 0MHz (S2 = S1 = H)		_	12	μA
			100MHz CLKA (-1, -2, -3, -4)	_	_	45	
			100MHz CLKA (-1H, -2H)	_	_	70	
IDD	Supply Current	Unloaded Outputs	66MHz CLKA (-1, -2, -3, -4)	_	_	32	mA
		Select Inputs at VDD or GND	66MHz CLKA (-1H, -2H)	_	_	50	
			33MHz CLKA (-1, -2, -3, -4)	_	_	18	
			33MHz CLKA (-1H, -2H)	_	_	30	

^{1.} Applies to both REF and FBK.

SWITCHING CHARACTERISTICS-COMMERCIAL

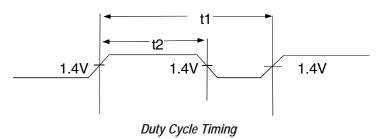
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tı	Output Frequency	30pF Load, all devices	10	_	100	MHz
tı	Output Frequency	20pF Load, -1H, -2H Devices	10	_	133.3	MHz
tı	Output Frequency	15pF Load, -1, -2, -3, -4 devices	10	_	133.3	MHz
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, Fout = 66.66MHz	40	50	60	%
	(-1, -2, -3, -4, -1H, -2H)	30pF Load				
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, FOUT = 50MHz	45	50	55	%
	(-1, -2, -3, -4, -1H, -2H)	15pF Load				
t3	Rise Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 30pF Load	_	_	2.2	ns
t3	Rise Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 15pF Load	_	_	1.5	ns
t3	Rise Time (-1H, -2H)	Measured between 0.8V and 2V, 30pF Load	_	_	1.5	ns
t4	Fall Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 30pF Load	_	_	2.2	ns
t4	Fall Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 15pF Load	<u> </u>	_	1.5	ns
t4	Fall Time (-1H)	Measured between 0.8V and 2V, 30pF Load	_	_	1.25	ns
t5	Output to Output Skew on same Bank	All outputs equally loaded	_	_	200	ps
	(-1, -2, -3, -4)					
	Output to Output Skew (-1H, -2H)	All outputs equally loaded	_	_	200	ps
	Output Bank A to Output Bank B (-1, -4, -2H)	All outputs equally loaded	_	_	200	ps
	Output Bank A to Output Bank B Skew (-2, -3)	All outputs equally loaded	_	_	400	ps
t 6	Delay, REF Rising Edge to FBK Rising Edge	Measured at VDD/2	_	0	±250	ps
t7	Device to Device Skew	Measured at VDD/2 on the FBK pins of devices	_	0	700	ps
t8	Output Slew Rate	Measured between 0.8V and 2V on -1H, -2H	1	_	_	V/ns
		device using Test Circuit 2				
tı	Cycle to Cycle Jitter	Measured at 66.67 MHz, loaded outputs, 15pF Load	_	_	200	
	(-1, -1H, -4)	Measured at 66.67 MHz, loaded outputs, 30pF Load	_	_	200	ps
		Measured at 133.3 MHz, loaded outputs, 15pF Load	_	_	100]
tJ	Cycle to Cycle Jitter	Measured at 66.67 MHz, loaded outputs, 30pF Load	_	_	400	ps
	(-2, -2H, -3)	Measured at 66.67 MHz, loaded outputs, 15pF Load	_	_	400	
tlock	PLL Lock Time	Stable Power Supply, valid clocks presented	_	_	1	ms
		on REF and FBK pins				

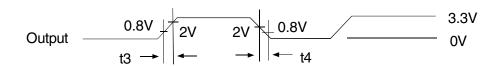
OPERATING CONDITIONS-INDUSTRIAL

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
VDD	Supply Voltage		3	3.6	V
TA	Operating Temperature (Ambient Temperature)		-40	+85	°C
CL	Load Capacitance below 100MHz		_	30	pF
	Load Capacitance from 100MHz to 133MHz		_	15	pF
CIN	Input Capacitance ⁽¹⁾		_	7	pF

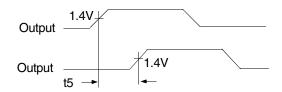
NOTE:

DC ELECTRICAL CHARACTERISTICS-INDUSTRIAL

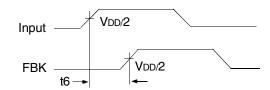

Symbol	Parameter	Conditi	ons	Min.	Typ. ⁽¹⁾	Max.	Unit
VIL	Input LOW Voltage Level			_	_	0.8	V
VIH	Input HIGH Voltage Level			2	_	_	V
lıL	Input LOW Current	VIN = 0V		_	_	50	μΑ
Іін	Input HIGH Current	VIN = VDD		_	_	100	μΑ
Vol	Output LOW Voltage	IOL = 8mA (-1, -2, -3, -4)		_	_	0.4	V
		IoL = 12mA (-1H, -2H)	IOL = 12mA (-1H, -2H)				
Vон	Output HIGH Voltage	Iон = -8mA (-1, -2, -3, -4)		2.4	_	_	V
		Iон = -12mA (-1H, -2H)					
IDD_PD	Power Down Current	REF = 0MHz (S2 = S1 = H)		_	_	25	μΑ
			100MHz CLKA (-1, -2, -3, -4)	_	_	45	
			100MHz CLKA (-1H, -2H)	_	_	70	
IDD	Supply Current	Unloaded Outputs	66MHz CLKA (-1, -2, -3, -4)	_	_	32	mA
		Select Inputs at VDD or GND	66MHz CLKA (-1H, -2H)	_	_	50	
			33MHz CLKA (-1, -2, -3, -4)	_	_	18	
			33MHz CLKA (-1H, -2H)	_	_	30	

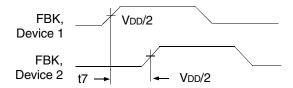

^{1.} Applies to both REF and FBK.

SWITCHING CHARACTERISTICS-INDUSTRIAL

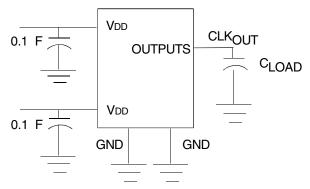

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tı	Output Frequency	30pF Load, all devices	10		100	MHz
tı	Output Frequency	20pF Load, -1H, -2H Devices	10	_	133.3	MHz
tı	Output Frequency	15pF Load, -1, -2, -3, -4 devices	10		133.3	MHz
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, Fout = 66.66MHz	40	50	60	%
	(-1, -2, -3, -4, -1H, -2H)	30pF Load				
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, Fout = 50MHz	45	50	55	%
	(-1, -2, -3, -4, -1H, -2H)	15pF Load				
t3	Rise Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 30pF Load	_	_	2.2	ns
t3	Rise Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 15pF Load	_		1.5	ns
ts	Rise Time (-1H, -2H)	Measured between 0.8V and 2V, 30pF Load	_	_	1.5	ns
t4	Fall Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 30pF Load	_		2.2	ns
t4	Fall Time (-1, -2, -3, -4)	Measured between 0.8V and 2V, 15pF Load	_	_	1.5	ns
t4	Fall Time (-1H)	Measured between 0.8V and 2V, 30pF Load	_	_	1.25	ns
t5	Output to Output Skew on same Bank	All outputs equally loaded	_		200	ps
	(-1, -2, -3, -4)					
	Output to Output Skew (-1H, -2H)	All outputs equally loaded			200	ps
	Output Bank A to Output Bank B (-1, -4, -2H)	All outputs equally loaded	_	_	200	ps
	Output Bank A to Output Bank B Skew (-2, -3)	All outputs equally loaded	_		400	ps
t6	Delay, REF Rising Edge to FBK Rising Edge	Measured at VDD/2	_	0	±250	ps
t7	Device to Device Skew	Measured at VDD/2 on the FBK pins of devices	_	0	700	ps
t8	Output Slew Rate	Measured between 0.8V and 2V on -1H, -2H	1	_	_	V/ns
		device using Test Circuit 2				
tı	Cycle to Cycle Jitter	Measured at 66.67 MHz, loaded outputs, 15pF Load	_	_	200	
	(-1, -1H, -4)	Measured at 66.67 MHz, loaded outputs, 30pF Load	_	_	200	ps
		Measured at 133.3 MHz, loaded outputs, 15pF Load	_	_	100	1
tJ	Cycle to Cycle Jitter	Measured at 66.67 MHz, loaded outputs, 30pF Load	_	_	400	ps
	(-2, -2H, -3)	Measured at 66.67 MHz, loaded outputs, 15pF Load	<u> </u>	<u> </u>	400	1
tlock	PLL Lock Time	Stable Power Supply, valid clocks presented	<u> </u>		1	ms
		on REF and FBK pins				

SWITCHING WAVEFORMS

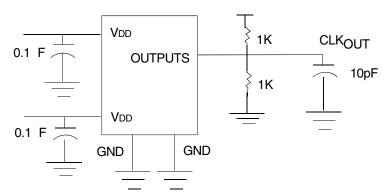



All Outputs Rise/Fall Time

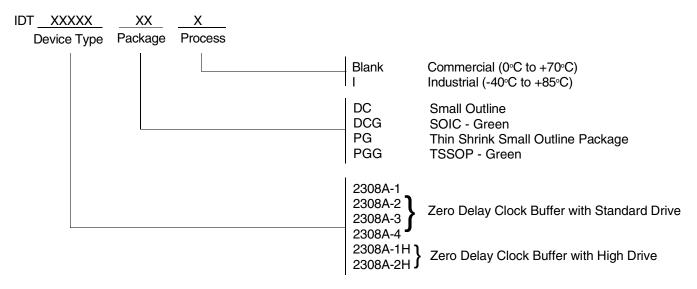
Output to Output Skew


Input to Output Propagation Delay

Device to Device Skew


TEST CIRCUITS

TEST CIRCUIT 1


Test Circuit for all Parameters Except t8

TEST CIRCUIT 2

Test Circuit for t8, Output Slew Rate On -1H and -2H Devices

ORDERING INFORMATION

Ordering Code	Package Type	Operating Range
IDT2308A-1DCG	16-Pin SOIC	Commercial
IDT2308A-1DCGI	16-Pin SOIC	Industrial
IDT2308A-1HDCG	16-Pin SOIC	Commercial
IDT2308A-1HDCGI	16-Pin SOIC	Industrial
IDT2308A-1HPG	16-Pin TSSOP	Commercial
IDT2308A-1HPGG	16-Pin TSSOP	Commercial
IDT2308A-1HPGGI	16-Pin TSSOP	Industrial
IDT2308A-1HPGI	16-Pin TSSOP	Industrial
IDT2308A-2DCG	16-Pin SOIC	Commercial
IDT2308A-2DCGI	16-Pin SOIC	Industrial
IDT2308A-2HDCG	16-Pin SOIC	Commercial
IDT2308A-2HDCGI	16-Pin SOIC	Industrial
IDT2308A-3DCG	16-Pin SOIC	Commercial
IDT2308A-3DCGI	16-Pin SOIC	Industrial
IDT2308A-4DCG	16-Pin SOIC	Commercial
IDT2308A-4DCGI	16-Pin SOIC	Industrial

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE
ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7
MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI
5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2
MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD95160BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2