3.3V ZERO DELAY

FEATURES:

- Phase-Lock Loop Clock Distribution
- 10 MHz to 133 MHz operating frequency
- Distributes one clock input to one bank of five and one bank of four outputs
- Separate output enable for each output bank
- Output Skew < 250ps
- Low jitter <200 ps cycle-to-cycle
- IDT2309A-1 for Standard Drive
- IDT2309A-1H for High Drive
- No external RC network required
- Operates at 3.3V VdD
- Available in SOIC and TSSOP packages

DESCRIPTION:

The IDT2309A is a high-speed phase-lock loop (PLL) clock buffer, designed to address high-speed clock distribution applications. The zero delay is achieved by aligning the phase between the incoming clock and the output clock, operable within the range of 10 to 133 MHz .

The IDT2309A is a 16-pin version of the IDT2305A. The IDT2309A accepts one reference input, and drives two banks of four low skew clocks. The -1H version of this device operates up to 133 MHz frequency and has higher drive than the -1 device. All parts have on-chip PLLs which lock to an input clock on the REF pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad. In the absence of an input clock, the IDT2309A enters power down. In this mode, the device will draw less than 12μ A for Commercial Temperature range and less than 25μ A for Industrial temperature range, and the outputs are tri-stated.

The IDT2309A is characterized for both Industrial and Commercial operation.

FUNCTIONALBLOCKDIAGRAM

PINCONFIGURATION

SOICI TSSOP
TOP VIEW

ABSOLUTEMAXIMUMRATINGS ${ }^{(1)}$

Symbol	Rating	Max.	Unit
VdD	Supply Voltage Range	-0.5 to +4.6	V
$\mathrm{V}_{1}{ }^{(2)}$	Input Voltage Range (REF)	-0.5 to +5.5	V
VI	InputVoltage Range (except REF)	$\begin{gathered} \hline-0.5 \mathrm{to} \\ \mathrm{VDD}+0.5 \end{gathered}$	V
$\mathrm{IIK}(\mathrm{VI}<0)$	InputClamp Current	-50	mA
1 l (Vo = 0 to VdD)	Continuous OutputCurrent	± 50	mA
VdD or GND	ContinuousCurrent	± 100	mA
$\mathrm{TA}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) ${ }^{(3)}$	Maximum Power Dissipation	0.7	W
Tstg	Storage Temperature Range	$-65 t 0+150$	${ }^{\circ} \mathrm{C}$
Operating Temperature	Commercial Temperature Range	0 to +70	${ }^{\circ} \mathrm{C}$
Operating Temperature	Industrial Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils.

PINDESCRIPTION

Pin Name	Pin Number	Type	Functional Description
REF	1	IN	Input reference clock, 5 Volttolerantinput
CLKA1 ${ }^{(1)}$	2	Out	Output clock for bank A
CLKA2 ${ }^{(1)}$	3	Out	Output clock for bank A
VdD	4,13	PWR	3.3V Supply
GND	5,12	GND	Ground
CLKB1 ${ }^{(1)}$	6	Out	Output clock for bank B
CLKB2 ${ }^{(1)}$	7	Out	Output clock for bank B
S2 ${ }^{(2)}$	8	IN	Select input Bit 2
S1 ${ }^{(2)}$	9	IN	Select input Bit 1
CLKB3 ${ }^{(1)}$	10	Out	Output clock for bank B
CLKB4 ${ }^{(1)}$	11	Out	Output clock for bank B
CLKA3 ${ }^{(1)}$	14	Out	Output clock for bank A
CLKA4 ${ }^{(1)}$	15	Out	Output clock for bank A
CLKOUT ${ }^{(1)}$	16	Out	Output clock, internal feedback on this pin

NOTES:

1. Weak pull down on all outputs.
2. Weak pull ups on these inputs.

FUNCTIONTABLE(1)

S2	S1	CLKA	CLKB	CLKOUT $^{(2)}$	Output Source	PLL Shut Down
L	L	Tri-State	Tri-State	Driven	PLL	N
L	H	Driven	Tri-State	Driven	PLL	N
H	L	Driven	Driven	Driven	REF	Y
H	H	Driven	Driven	Driven	PLL	N

NOTES:

1. $\mathrm{H}=$ HIGH Voltage Level.

L = LOW Voltage Level
2. This output is driven and has an internal feedback for the PLL. The load on this ouput can be adjusted to change the skew between the REF and the output.

DCELECTRICALCHARACTERISTICS-COMMERCIAL

Symbol	Parameter	Conditions		Min.	Max.	Unit
VIL	InputLOW Voltage Level			-	0.8	V
VIH	Input HIGH Voltage Level			2	-	V
IIL	InputLOW Current	VIN $=0 \mathrm{~V}$		-	50	$\mu \mathrm{A}$
І1н	Input HIGH Current	$\mathrm{VIN}=\mathrm{V}$ d		-	100	$\mu \mathrm{A}$
Vol	OutputLOW Voltage	Standard Drive	$\mathrm{IOL}=8 \mathrm{~mA}$	-	0.4	V
		High Drive	IoL $=12 \mathrm{~mA}(-1 \mathrm{H})$			
Vor	Output HIGH Voltage	Standard Drive	$\mathrm{IOH}=-8 \mathrm{~mA}$	2.4	-	V
		High Drive	$\mathrm{IOH}=-12 \mathrm{~mA}(-1 \mathrm{H})$			
IDD_PD	Power Down Current	REF $=0 \mathrm{MHz}$ (S2 = S1 = H)		-	12	$\mu \mathrm{A}$
IDD	Supply Current	Unloaded Outputs at 66.66MHz, SEL inputs at VdD or GND		-	32	mA

OPERATING CONDITIONS-COMMERCIAL

Symbol	Parameter	Min.	Max.	Unit
VDD	Supply Voltage	3	3.6	
TA	OperatingTemperature(AmbientTemperature)	0	70	${ }^{\circ} \mathrm{C}$
CL	Load Capacitance $<100 \mathrm{MHz}$	-	30	pF
	Load Capacitance $100 \mathrm{MHz}-133 \mathrm{MHz}$	-	10	
CIN	InputCapacitance	-	7	pF

SWITCHING CHARACTERISTICS (2309A-1) - COMMERCIAL ${ }^{(1,2)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t1	OutputFrequency	10pFLoad	10	-	133	MHz
		30pFLoad	10	-	100	
	Duty Cycle $=$ t2 \div t1	Measured at 1.4V, Fout $=66.66 \mathrm{MHz}$	40	50	60	\%
$t 3$	Rise Time	Measured between 0.8 V and 2 V	-	-	2.5	ns
t4	Fall Time	Measured between 0.8 V and 2 V	-	-	2.5	nS
t	Outputto OutputSkew	All outputs equally loaded	-	-	250	ps
t6A	Delay, REF Rising Edge to CLKOUT Rising Edge ${ }^{(2)}$	Measured at VdD/2	-	0	± 350	ps
t6B	Delay, REF Rising Edge to CLKOUT Rising Edge ${ }^{(2)}$	Measured at Vdd/2 in PLL bypass mode (IDT2309A only)	1	5	8.7	ns
\square	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	-	0	700	ps
ts	Cycle-to-Cycle Jitter	Measured at 66.66 MHz , loaded outputs	-	-	200	ps
tlock	PLL Lock Time	Stable power supply, valid clock presented on REF pin	-	-	1	ms

NOTES:

1. REF Input has a threshold voltage of $\mathrm{VDD} / 2$.
2. All parameters specified with loaded outputs.

SWITCHING CHARACTERISTICS (2309A-1H) - COMMERCIAL ${ }^{(1,2)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t	OutputFrequency	10pFLoad	10	-	133	MHz
		30pFLoad	10	-	100	
	Duty Cycle $=$ t2 \div t1	Measured at 1.4 V , Fout $=66.66 \mathrm{MHz}$	40	50	60	\%
	Duty Cycle $=$ t2 \div t1	Measured at 1.4V, Fout < 50 MHz	45	50	55	\%
t	Rise Time	Measured between 0.8 V and 2 V	-	-	1.5	ns
$t 4$	Fall Time	Measured between 0.8 V and 2 V	-	-	1.5	ns
5	Outputto Output Skew	All outputs equally loaded	-	-	250	ps
t6A	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at Vdd/2	-	0	± 350	ps
t6B	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at Vdd/2 in PLL bypass mode (IDT2309A only)	1	5	8.7	ns
\square	Device-to-Device Skew	Measured at Vdd/2 on the CLKOUT pins of devices	-	0	700	ps
18	Output Slew Rate	Measured between 0.8 V and 2 V using Test Circuit 2	1	-	-	V/ns
ts	Cycle-to-Cycle Jitter	Measured at 66.66 MHz , loaded outputs	-	-	200	ps
tıock	PLL Lock Time	Stable power supply, valid clock presented on REF pin	-	-	1	ms

NOTES:

1. REF Input has a threshold voltage of $\mathrm{VdD} / 2$.
2. All parameters specified with loaded outputs.

DCELECTRICALCHARACTERISTICS-INDUSTRIAL

Symbol	Parameter	Conditions		Min.	Max.	Unit
VIL	InputLOWVoltage Level			-	0.8	V
VIH	Input HIGH Voltage Level			2	-	V
IIL	InputLOW Current	VIN $=0 \mathrm{~V}$		-	50	$\mu \mathrm{A}$
IIH	Input HIGH Current	VIN $=$ V ${ }^{\text {d }}$		-	100	$\mu \mathrm{A}$
Vol	OutputLOWVoltage	Standard Drive	$\mathrm{IOL}=8 \mathrm{~mA}$	-	0.4	V
		High Drive	Iot $=12 \mathrm{~mA}(-1 \mathrm{H})$			
Vor	Output HIGH Voltage	Standard Drive	$\mathrm{IOH}=-8 \mathrm{~mA}$	2.4	-	V
		High Drive	$\mathrm{IOH}=-12 \mathrm{~mA}(-1 \mathrm{H})$			
IDD_PD	Power Down Current	REF $=0 \mathrm{MHz}$ ($\mathrm{S} 2=\mathrm{S} 1=\mathrm{H}$)		-	25	$\mu \mathrm{A}$
IDD	Supply Current	Unloaded Outputs at 66.66MHz, SEL inputs at VdD or GND		-	35	mA

OPERATING CONDITIONS-INDUSTRIAL

Symbol	Parameter	Min.	Max.	Unit
VDD	Supply Voltage	3	3.6	V
TA	OperatingTemperature(AmbientTemperature)	-40	+85	${ }^{\circ} \mathrm{C}$
CL	Load Capacitance $<100 \mathrm{MHz}$	-	30	pF
	Load Capacitance $100 \mathrm{MHz}-133 \mathrm{MHz}$	-	10	
CIN	InputCapacitance	-	7	pF

SWITCHING CHARACTERISTICS (2309A-1) - INDUSTRIAL ${ }^{(1,2)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t1	OutputFrequency	10pFLoad	10	-	133	MHz
		30pFLoad	10	-	100	
	Duty Cycle $=\mathrm{t} 2 \div \mathrm{t} 1$	Measured at 1.4V, Fout $=66.66 \mathrm{MHz}$	40	50	60	\%
$t 3$	Rise Time	Measured between 0.8 V and 2 V	-	-	2.5	ns
t4	Fall Time	Measured between 0.8 V and 2 V	-	-	2.5	ns
t	Outputto Output Skew	All outputs equally loaded	-	-	250	ps
t6A	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at Vdd/2	-	0	± 350	ps
t6B	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at Vdd/2 in PLL bypass mode (IDT2309A only)	1	5	8.7	ns
\square	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	-	0	700	ps
ts	Cycle-to-Cycle Jitter	Measured at66.66MHz, loaded outputs	-	-	200	ps
tıock	PLLLock Time	Stable power supply, valid clock presented on REF pin	-	-	1	ms

NOTES:

1. REF Input has a threshold voltage of $\mathrm{VDD} / 2$.
2. All parameters specified with loaded outputs.

SWITCHING CHARACTERISTICS (2309A-1H) - INDUSTRIAL ${ }^{(1,2)}$

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
t	OutputFrequency	10pFLoad	10	-	133	MHz
		30pFLoad	10	-	100	
	Duty Cycle $=\mathrm{t} 2 \div \mathrm{t} 1$	Measured at 1.4 V , Fout $=66.66 \mathrm{MHz}$	40	50	60	\%
	Duty Cycle $=$ t2 \div t1	Measured at 1.4V, Fout < 50 MHz	45	50	55	\%
$t 3$	Rise Time	Measured between 0.8 V and 2 V	-	-	1.5	ns
t4	Fall Time	Measured between 0.8 V and 2 V	-	-	1.5	ns
t5	Outputto Output Skew	All outputs equally loaded	-	-	250	ps
t6A	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at Vdd/2	-	0	± 350	ps
t6B	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at VDd/2 in PLL bypass mode (IDT2309A only)	1	5	8.7	ns
\square	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	-	0	700	ps
t8	Output Slew Rate	Measured between 0.8 V and 2 V using Test Circuit 2	1	-	-	V/ns
tJ	Cycle-to-Cycle Jitter	Measured at 66.66 MHz , loaded outputs	-	-	200	ps
tlock	PLL Lock Time	Stable power supply, valid clock presented on REF pin	-	-	1	ms

NOTES:

1. REF Input has a threshold voltage of $\mathrm{VDD} / 2$.
2. All parameters specified with loaded outputs.

ZERODELAY AND SKEWCONTROL

All outputs should be uniformly loaded in order to achieve Zero I/O Delay. Since the CLKOUT pin is the internal feedback for the PLL, its relative loading can affect and adjust the input/output delay. The Output Load Difference diagram illustrates the PLL's relative loading with respect to the other outputs that can adjust the Input-Output (I/O) Delay.

For designs utilizing zero I/O Delay, all outputs including CLKOUT must be equally loaded. Even if the output is not used, it must have a capacitive load equal to that on the other outputs in order to obtain true zero I/O Delay. For zero output-to-output skew, all outputs must be loaded equally.

SWITCHING WAVEFORMS

Duty Cycle Timing

All Outputs Rise/Fall Time

Output to Output Skew

Input to Output Propagation Delay

Device to Device Skew

TESTCIRCUITS

Test Circuit 1 (all Parameters Except t8)

Test Circuit 2 (t8, Output Slew Rate On -1H Devices)

ORDERINGINFORMATION

Ordering Code	Package Type	Operating Range
2309A-1DCG	16-Pin SOIC	Commercial
2309A-1DCGI	16-Pin SOIC	Industrial
2309A-1HDCG	16-Pin SOIC	Commercial
2309A-1HDCGI	16-Pin SOIC	Industrial
2309A-1HPGG	16-Pin TSSOP	Commercial
2309A-1HPGGI	16-Pin TSSOP	Industrial

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX

PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB3N2304NZDTR2G NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7

