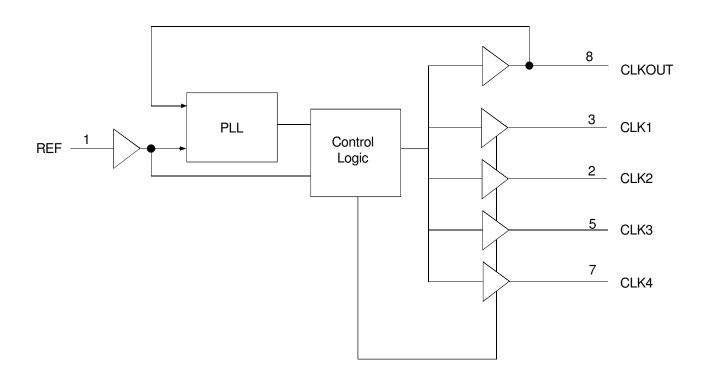


3.3V ZERO DELAY CLOCK BUFFER, SPREAD SPECTRUM COMPATIBLE

FEATURES:

- Phase-Lock Loop Clock Distribution
- 10MHz to 133MHz operating frequency
- · Distributes one clock input to one bank of five outputs
- Zero Input-Output Delay
- Output Skew < 250ps
- Low jitter <200 ps cycle-to-cycle
- IDT23S05-1 for Standard Drive
- IDT23S05-1H for High Drive
- No external RC network required
- Operates at 3.3V VDD
- Power down mode
- Spread spectrum compatible
- · Available in SOIC package

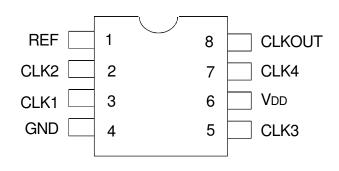

DESCRIPTION:

The IDT23S05 is a high-speed phase-lock loop (PLL) clock buffer, designed to address high-speed clock distribution applications. The zero delay is achieved by aligning the phase between the incoming clock and the output clock, operable within the range of 10 to 133MHz.

The IDT23S05 is an 8-pin version of the IDT23S09. IDT23S05 accepts one reference input, and drives out five low skew clocks. The -1H version of this device operates up to 133MHz frequency and has a higher drive than the -1 device. All parts have on-chip PLLs which lock to an input clock on the REF pin. The PLL feedback is on-chip and is obtained from the CLKOUT pad. In the absence of an input clock, the IDT23S05 enters power down. In this mode, the device will draw less than 12µA for Commercial Temperature range and less than 25µA for Industrial temperature range, the outputs are tri-stated, and the PLL is not running, resulting in a significant reduction of power.

The IDT23S05 is characterized for both Industrial and Commercial operation.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc

COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

AUGUST 2010

PIN CONFIGURATION

SOIC TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Max.	Unit
Vdd	Supply Voltage Range	-0.5 to +4.6	V
VI ⁽²⁾	Input Voltage Range (REF)	-0.5 to +5.5	V
VI	Input Voltage Range	-0.5 to	V
	(except REF)	Vdd+0.5	
Iк (VI < 0)	Input Clamp Current	-50	mA
Io (Vo = 0 to VDD)	Continuous Output Current	±50	mA
VDD or GND	Continuous Current	±100	mA
TA = 55°C	Maximum Power Dissipation	0.7	W
(in still air) ⁽³⁾			
Тѕтс	Storage Temperature Range	-65 to +150	°C
Operating	CommercialTemperature	0 to +70	°C
Temperature	Range		
Operating	Industrial Temperature	-40 to +85	°C
Temperature	Range		

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

APPLICATIONS:

- SDRAM
- Telecom
- Datacom
- PC Motherboards/Workstations
- Critical Path Delay Designs

PIN DESCRIPTION

Pin Name	Pin Number	Туре	Functional Description	
REF ⁽¹⁾	1	IN	Input reference clock, 5 Volt tolerant input	
CLK2 ⁽²⁾	2	Out	Output clock	
CLK1 ⁽²⁾	3	Out	Output clock	
GND	4	Ground	Ground	
CLK3 ⁽²⁾	5	Out	Output clock	
Vdd	6	PWR	3.3V Supply	
CLK4 ⁽²⁾	7	Out	Output clock	
CLKOUT ⁽²⁾	8	Out	Output clock, internal feedback on this pin	

NOTES:

1. Weak pull down.

2. Weak pull down on all outputs.

OPERATING CONDITIONS - COMMERCIAL

Symbol	Parameter	Min.	Max.	Unit
Vdd	Supply Voltage	3	3.6	V
TA	Operating Temperature (Ambient Temperature)	0	70	°C
CL	Load Capacitance < 100MHz	—	30	pF
	Load Capacitance 100MHz - 133MHz	—	10	
CIN	Input Capacitance	—	7	pF

DC ELECTRICAL CHARACTERISTICS - COMMERCIAL

Symbol	Parameter	0	Conditions		Max.	Unit
VIL	Input LOW Voltage Level			—	0.8	V
Vih	Input HIGH Voltage Level			2	_	V
١L	Input LOW Current	VIN = 0V		—	50	μA
Ін	Input HIGH Current	VIN = VDD	VIN = VDD		100	μA
Vol	OutputLOWVoltage	Standard Drive	IOL = 8mA	—	0.4	V
		High Drive	IoL = 12mA (-1H)			
Vон	Output HIGH Voltage	Standard Drive	Iон = -8mA	2.4	_	V
		High Drive	Іон = -12mA (-1H)			
IDD_PD	Power Down Current	REF = 0MHz	·	—	12	μA
IDD	Supply Current	Unloaded Outputs at 66.	.66MHz	—	32	mA

SWITCHING CHARACTERISTICS (23S05-1) - COMMERCIAL^(1,2)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tı	Output Frequency	10pFLoad	10		133	MHz
		30pFLoad	10	—	100	
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, Fout = 66.66MHz	40	50	60	%
t3	RiseTime	Measured between 0.8V and 2V	—	—	2.5	ns
t4	FallTime	Measured between 0.8V and 2V	—	—	2.5	ns
t5	Output to Output Skew	All outputs equally loaded	—	—	250	ps
t6	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at VDD/2	—	0	±350	ps
17	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	_	0	700	ps
tJ	Cycle-to-Cycle Jitter, pk - pk	Measured at 66.66MHz, loaded outputs	_	_	200	ps
t LOCK	PLL Lock Time	Stable power supply, valid clock presented on REF pin	—	—	1	ms

NOTES:

1. REF Input has a threshold voltage of VDD/2.

2. All parameters specified with loaded outputs.

SWITCHING CHARACTERISTICS (23S05-1H) - COMMERCIAL^(1,2)

Symbol	Parameter	Conditions		Тур.	Max.	Unit
tı	Output Frequency	10pFLoad	10	—	133	MHz
		30pFLoad	10	—	100	
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, FOUT = 66.66MHz	40	50	60	%
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, FOUT <50MHz	45	50	55	%
ß	RiseTime	Measured between 0.8V and 2V		_	1.5	ns
t4	FallTime	Measured between 0.8V and 2V		_	1.5	ns
ts	Output to Output Skew	All outputs equally loaded	_	_	250	ps
t6	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at VDD/2	_	0	±350	ps
t	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	_	0	700	ps
t 8	Output Slew Rate	Measured between 0.8V and 2V using Test Circuit #2	1	_	-	V/ns
tJ	Cycle-to-Cycle Jitter, pk - pk	Measured at 66.66MHz, loaded outputs	_	_	200	ps
t LOCK	PLL Lock Time	Stable power supply, valid clock presented on REF pin	_	—	1	ms

NOTES:

1. REF Input has a threshold voltage of VDD/2.

2. All parameters specified with loaded outputs.

OPERATING CONDITIONS - INDUSTRIAL

Symbol	Parameter	Min.	Max.	Unit
Vdd	SupplyVoltage	3	3.6	V
TA	Operating Temperature (Ambient Temperature)	-40	+85	°C
CL	Load Capacitance < 100MHz	—	30	pF
	Load Capacitance 100MHz - 133MHz	—	10	
CIN	InputCapacitance	_	7	pF

DC ELECTRICAL CHARACTERISTICS - INDUSTRIAL

Symbol	Parameter	C	onditions	Min.	Max.	Unit
VIL	Input LOW Voltage Level			—	0.8	V
Vih	Input HIGH Voltage Level			2	_	V
١L	InputLOW Current	VIN = 0V		—	50	μA
Ін	Input HIGH Current	VIN = VDD	VIN = VDD		100	μA
Vol	Output LOW Voltage	Standard Drive	Iol = 8mA	—	0.4	V
		High Drive	lo∟ = 12mA (-1H)			
Vон	Output HIGH Voltage	Standard Drive	Iон = -8mA	2.4	_	V
		High Drive	Іон = -12mA (-1H)			
IDD_PD	Power Down Current	REF = 0MHz		—	25	μA
IDD	Supply Current	Unloaded Outputs at 66.	66MHz	—	35	mA

SWITCHING CHARACTERISTICS (23S05-1) - INDUSTRIAL^(1,2)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tı	Output Frequency	10pFLoad	10	—	133	MHz
		30pFLoad	10	—	100	
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, FOUT = 66.66MHz	40	50	60	%
t3	RiseTime	Measured between 0.8V and 2V	_	—	2.5	ns
t4	FallTime	Measured between 0.8V and 2V	_	—	2.5	ns
ts	Output to Output Skew	All outputs equally loaded	—	—	250	ps
t6	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at VDD/2	_	0	±350	ps
4	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	_	0	700	ps
tJ	Cycle-to-Cycle Jitter, pk - pk	Measured at 66.66MHz, loaded outputs	_	_	200	ps
t LOCK	PLL Lock Time	Stable power supply, valid clock presented on REF pin	_	_	1	ms

NOTES:

1. REF Input has a threshold voltage of VDD/2.

2. All parameters specified with loaded outputs.

SWITCHING CHARACTERISTICS (23S05-1H) - INDUSTRIAL (1,2)

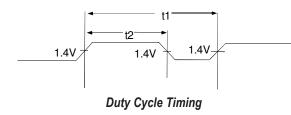
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
tı	Output Frequency	10pFLoad	10	—	133	MHz
		30pFLoad	10	_	100	
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, FOUT = 66.66MHz	40	50	60	%
	Duty Cycle = t2 ÷ t1	Measured at 1.4V, FOUT <50MHz	45	50	55	%
t3	RiseTime	Measured between 0.8V and 2V	_	—	1.5	ns
t4	FallTime	Measured between 0.8V and 2V	_	—	1.5	ns
ts	Output to Output Skew	All outputs equally loaded	—	—	250	ps
t6	Delay, REF Rising Edge to CLKOUT Rising Edge	Measured at VDD/2	_	0	±350	ps
tz	Device-to-Device Skew	Measured at VDD/2 on the CLKOUT pins of devices	_	0	700	ps
t8	Output Slew Rate	Measured between 0.8V and 2V using Test Circuit #2	1	_	_	V/ns
tJ	Cycle-to-Cycle Jitter, pk - pk	Measured at 66.66MHz, loaded outputs	_	_	200	ps
tlocк	PLL Lock Time	Stable power supply, valid clock presented on REF pin	_	_	1	ms

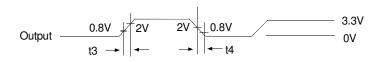
NOTES:

1. REF Input has a threshold voltage of VDD/2.

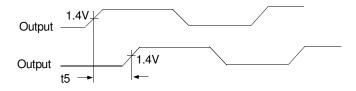
2. All parameters specified with loaded outputs.

ZERO DELAY AND SKEW CONTROL

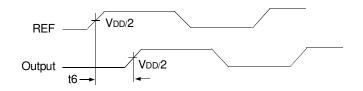

All outputs should be uniformly loaded in order to achieve Zero I/O Delay. Since the CLKOUT pin is the internal feedback for the PLL, its relative loading can affect and adjust the input/output delay.

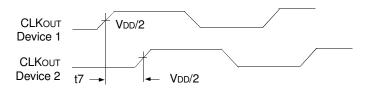

For designs utilizing zero I/O Delay, all outputs including CLKOUT must be equally loaded. Even if the output is not used, it must have a capacitive load equal to that on the other outputs in order to obtain true zero I/O Delay. If I/O Delay adjustments are needed, use the Output Load Difference diagram to calculate loading differences between the CLKOUT pin and other outputs. For zero output-to-output skew, all outputs must be loaded equally.

SPREAD SPECTRUM COMPATIBLE

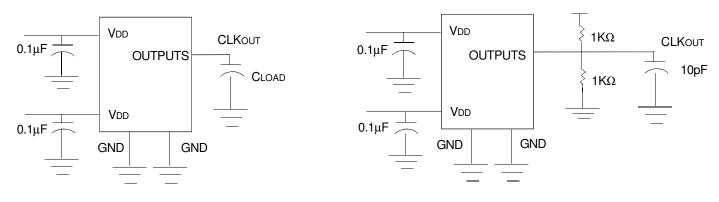

Many systems being designed now use a technology called Spread Spectrum Frequency Timing Generation. This product is designed not to filter off the Spread Spectrum feature of the reference input, assuming it exists. When a zero delay buffer is not designed to pass the Spread Spectrum feature through, the result is a significant amount of tracking skew, which may cause problems in systems requiring synchronization.

SWITCHING WAVEFORMS

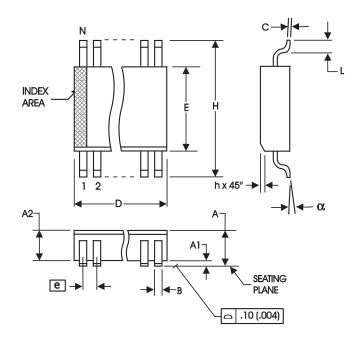



All Outputs Rise/Fall Time

Output to Output Skew



Input to Output Propagation Delay

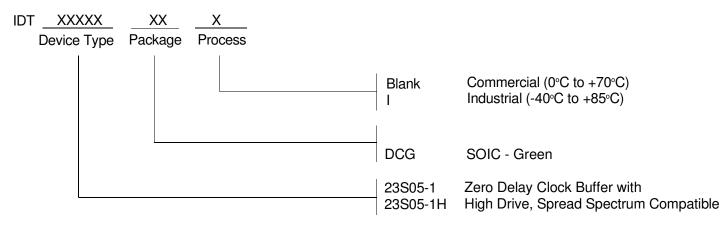


TEST CIRCUITS

Test Circuit 1 (all Parameters Except t8)

Test Circuit 2 (t8, Output Slew Rate On -1H Devices)

150 mil (Narrow Body) SOIC


	In Millimeters		In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
A	1.35	1.75	.0532	.0688	
A1	0.10	0.25	.0040	.0098	
В	0.33	0.51	.013	.020	
С	0.19	0.25	.0075	.0098	
D	SEE VARIATIONS		SEE VARIATIONS		
E	3.80	4.00	.1497	.1574	
е	1.27 E	1.27 BASIC		BASIC	
Н	5.80	6.20	.2284	.2440	
h	0.25	0.50	.010	.020	
L	0.40	1.27	.016 .050		
N	SEE VAF	SEE VARIATIONS		RIATIONS	
а	0°	8°	0°	8°	

VARIATIONS

N	D mm.		D (inch)	
N	MIN	MAX	MIN	MAX
8	4.80	5.00	.1890	.1968

Reference Doc.: JEDEC Publication 95, MS-012

ORDERING INFORMATION

Part / Order Number	Shipping Packaging	Package	Temperature
23S05-1DCG	Tubes	8-pin SOIC	0° to +70° C
23S05-1DCG8	Tape and Reel	8-pin SOIC	0° to +70° C
23S05-1DCGI	Tubes	8-pin SOIC	-40° to +85° C
23S05-1DCGI8	Tape and Reel	8-pin SOIC	-40° to +85° C
23S05-1HDCG	Tubes	8-pin SOIC	0° to +70° C
23S05-1HDCG8	Tape and Reel	8-pin SOIC	0° to +70° C
23S05-1HDCGI	Tubes	8-pin SOIC	-40° to +85°C
23S05-1HDCGI8	Tape and Reel	8-pin SOIC	-40° to +85°C

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7