FEATURES:

- Advanced CMOS Technology
- Guaranteed low skew < 200ps (max.)
- Very low propagation delay < 2.5ns (max)
- Very low duty cycle distortion < 270ps (max)
- Very low CMOS power levels
- Operating frequency up to 166 MHz
- TTL compatible inputs and outputs
- Two independent output banks with 3-state control
- 1:5 fanout per bank
- "Heartbeat" monitor output
- $\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$
- Available in SSOP and QSOP packages

DESCRIPTION:

The FCT20805 is a 2.5 volt clock driver built using advanced CMOS technology. The device consists oftwo banks ofdrivers, each with a 1:5 fanout and its own output enable control. The device has a "heartbeat" monitor for diagnostics and PLL driving. The MON output is identical to all other outputs and complies with the outputspecifications in this document. TheFCT20805 offers low capacitance inputs.

The FCT20805 is designed for high speed clock distribution where signal quality and skew are critical. The FCT20805 also allows single point-to-point transmissionline driving in applicationssuch as address distribution, whereone signal must be distributed to multiple recievers with low skew and high signal quality.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
Vcc	InputPower Supply Voltage	-0.5 to +4.6	V
VI	InputVoltage	-0.5 to +5.5	V
Vo	OutputVoltage	-0.5 to $\mathrm{Vcc}+0.5$	V
TJ	JunctionTemperature	150	${ }^{\circ} \mathrm{C}$
TSTG	StorageTemperature	-65 to +165	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	InputCapacitance	$\mathrm{VIN}=0 \mathrm{~V}$	3	4	pF
Cout	OutputCapacitance	VOUT $=0 \mathrm{~V}$	-	6	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
OEA, OEb $^{\prime}$	3-State OutputEnable Inputs (ActiveLOW)
$\mathrm{INA}_{\mathrm{A}}, \mathrm{INB}_{\mathrm{B}}$	Clock Inputs
OAn, OBn	ClockOutputs
MON	MonitorOutput

FUNCTION TABLE (1)

Inputs		Outputs	
OEA, ОЕв 2	$\mathrm{IN}, \mathrm{I} \mathrm{N}_{\mathrm{B}}$	OAn, OBn	MON
L	L	L	L
L	H	H	H
H	L	Z	L
H	H	Z	H

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$
$\mathrm{L}=\mathrm{LOW}$
Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified
Industrial: $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

Symbol	Parameter	TestConditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level			1.7	-	5.5	V
VIL	InputLOW Level			-0.5	-	0.7	V
IH	Input HIGH Current	Vcc $=$ Max.	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	-	-	± 1	
ILL	InputLOW Current	Vcc = Max.	$\mathrm{V}_{1}=$ GND	-	-	± 1	$\mu \mathrm{A}$
IozH	High Impedance OutputCurrent	Vcc $=$ Max.	$\mathrm{Vo}=\mathrm{Vcc}$	-	-	± 1	
Iozl	(3-State Outputs Pins)		Vo = GND	-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{Vcc}=\mathrm{Min}$., $\mathrm{lin}=$		-	-0.7	-1.2	V
Iodh	Output HIGH Current	$\mathrm{Vcc}=2.5 \mathrm{~V}$, VIN	$\mathrm{Vo}=1.25 \mathrm{~V}^{(3,4)}$	-15	-35	-90	mA
IODL	OutputLOWCurrent	$\mathrm{Vcc}=2.5 \mathrm{~V}$, VIN	$\mathrm{Vo}=1.25 \mathrm{~V}^{(3,4)}$	25	55	100	mA
los	ShortCircuitCurrent	Vcc = Max., Vo		-30	-50	-120	mA
VoH	Output HIGH Voltage	$\mathrm{Vcc}=\mathrm{Min}$.	$\mathrm{IOH}=-8 \mathrm{~mA}$	$1.7{ }^{(5)}$	-	-	V
		VIN = VIH or VIL	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	Vcc-0.2	-	-	
Vol	OutputLOW Voltage	$\mathrm{Vcc}=\mathrm{Min}$.	$\mathrm{IOL}=8 \mathrm{~mA}$	-	0.2	0.4	V
		VIN $=$ VIH or VIL	$\mathrm{IOL}=100 \mu \mathrm{~A}$	-	-	0.2	

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=2.5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. This parameter is guaranteed but not tested.
5. V он $=\mathrm{Vcc}-0.6 \mathrm{~V}$ at rated current.

POWER SUPPLY CH ARACTERISTICS

Symbol	Parameter	TestConditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
ICCL ICCH ICCZ	Quiescent Power Supply Current	$\begin{aligned} & \hline \text { Vcc }=\text { Max. } \\ & \text { VIN }=\text { GND or Vcc } \end{aligned}$		-	0.1	20	$\mu \mathrm{A}$
${ }^{\text {IICC }}$	Power Supply Current per Input HIGH	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=\mathrm{Vcc}-0.6 \mathrm{~V} \end{aligned}$		-	35	250	$\mu \mathrm{A}$
ICCD	Dynamic Power Supply Current perOutput ${ }^{(3)}$	$\begin{aligned} & \text { Vcc }=\text { Max. } \\ & C L=15 \mathrm{pF} \\ & \text { All Outputs Toggling } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	65	100	$\mu \mathrm{A} / \mathrm{MHz}$
Ic	Total Power Supply Current ${ }^{(4)}$	$\begin{aligned} & \text { VCC }=\text { Max. } \\ & C L=15 \mathrm{pF} \end{aligned}$ All Outputs Toggling $\mathrm{fi}=133 \mathrm{MHz}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	100	125	mA
			$\begin{aligned} & \text { VIN }=\text { VCc }-0.6 \mathrm{~V} \\ & \text { VIN }=\text { GND } \end{aligned}$	-	100	125	
		$\begin{aligned} & \text { VCC = Max. } \\ & C L=15 \mathrm{pF} \end{aligned}$ All Outputs Toggling $\mathrm{fi}=166 \mathrm{MHz}$	$\begin{aligned} & \hline \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	115	150	
			$\begin{aligned} & \text { VIN }=\text { VCc }-0.6 \mathrm{~V} \\ & \text { VIN }=\text { GND } \end{aligned}$	-	115	150	

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=2.5 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
4. IC $=$ IQUIESCENT + IINPUTS + IDYNAMIC
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICC} \operatorname{DHNT}+\mathrm{ICCD}$ (foNo)
Icc = Quiescent Current (IcCL, Icch and Iccz)
$\Delta \mathrm{Icc}=$ Power Supply Current for a TTL High Input (VIn $=$ Vcc -0.6 V)
Dh = Duty Cycle for TTL Inputs High
Nt = Number of TTL Inputs at Dh
ICCD $=$ Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
fo = Output Frequency
No = Number of Outputs at fo

SWITCHING CHARACTERISTICS OVER OPERATING RANGE $(3,4)$

Symbol	Parameter	Conditions ${ }^{(1)}$	Min. ${ }^{(2)}$	Max.	Unit
tPLH	PropagationDelay	$\mathrm{CL}=15 \mathrm{pF}$	1	3	ns
tPHL	INA to OAn, Ins to OBn	$\mathrm{f} \leq 133 \mathrm{MHz}$			
R	Output Rise Time (0.8 V to 2V)		-	1.5	ns
tF	Output Fall Time (2V to 0.8V)		-	1.5	ns
tsk(0)	Same device output pin to pin skew ${ }^{(5)}$		-	270	ps
tSK(P)	Pulse skew ${ }^{(6,9)}$		-	270	ps
tSK(PP)	Partto partskew ${ }^{(7)}$		-	550	ps
$\begin{aligned} & \text { tPZL } \\ & \text { tPZH } \end{aligned}$	OutputEnable Time OEA to OAn, OEb to OBn		-	5.2	ns
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	OutputDisable Time OEA to OAn, OEb to OBn		-	5.2	ns
fmax	InputFrequency		-	133	MHz

Symbol	Parameter	Conditions ${ }^{(1,8)}$	Min. ${ }^{(2)}$	Max.	Unit
tPLH	PropagationDelay	$\begin{gathered} \mathrm{CL}=15 \mathrm{pF} \\ 133 \mathrm{MHz} \leq \mathrm{f} \leq 166 \mathrm{MHz} \end{gathered}$	0.5	2.5	ns
tPHL	INA to OAn, INB to OBn				
R	Output Rise Time (0.7V to 1.7V)		-	1.25	ns
tF	Output Fall Time (1.7V to 0.7V)		-	1.25	ns
tsk(0)	Same device output pin to pin skew ${ }^{(5)}$		-	200	ps
tSK(P)	Pulse skew ${ }^{(6,9)}$		-	270	ps
tSK(PP)	Partto partskew ${ }^{(7)}$		-	550	ps
$\begin{aligned} & \text { tPZL } \\ & \text { tpZH } \end{aligned}$	OutputEnable Time OEA to OAn, OEb to OBn		-	5.2	ns
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	OutputDisable Time OEA to OAn, OEb to OBn		-	5.2	ns
fmax	InputFrequency		-	166	MHz

NOTES:

1. See test circuits and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. tPLH and tPHL are production tested. All other parameters guaranteed but not production tested
4. Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature and process parameters. These propagation delay limits do not imply skew.
5. Skew measured between all outputs under identical transitions and load conditions.
6. Skew measured is difference between propagation delay times tPHL and tpL of same outputs under identical load conditions.
7. Part to part skew for all outputs given identical transitions and load conditions at identical Vcc levels and temperature.
8. Airflow of $1 \mathrm{~m} / \mathrm{s}$ is recommended for frequencies above 133 MHz .
9. This parameter is measured using $f=1 \mathrm{MHz}$.

TEST CIRCUITS AND WAVEFORMS

Enable and Disable Time Circuit

$C L=15 p F$ Test Circuit

tSK $(0)=|t P L H 2-t P L H 1|$ or $|t P H L 2-t P H L 1|$
Output Skew - tsk(0)

SWITCH POSITION

Test	Switch
Disable Low Enable Low	4.6 V
Disable High Enable High	GND

TEST CONDITIONS

Symbol	Vcc $=\mathbf{2 . 5 V} \pm 0.2 \mathrm{~V}$	Unit
CL	15	pF
RT	Zout ofpulsegenerator	Ω
RL	33	Ω
$\mathrm{tR} / \mathrm{tF}$	1 (0V to 2.5 V or 2.5 V to 0 V)	ns

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.
tR / tF = Rise/Fall time of the input stimulus from the Pulse Generator.

TEST CIRCUITS AND WAVEFORMS

Enable and Disable Times
NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH

tSK(PP) $=\mid$ tPLH2 - tPLH1 \mid or $\mid t P H L 2-$ tPHL1 \mid

Part-to-Part Skew - tSK(PP)

Part-to-Part Skew is for the same package and speed grade.

Pulse Skew

Propagation Delay

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 6ES7231-4HD32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9513BCPZ AD9514BCPZ AD9514BCPZ-REEL7 $\underline{\text { AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ }}$ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI

