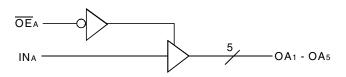
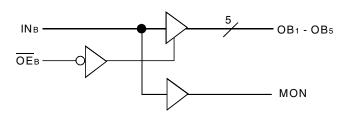
3.3V CMOS DUAL 1-TO-5 CLOCK DRIVER

IDT49FCT3805D/E

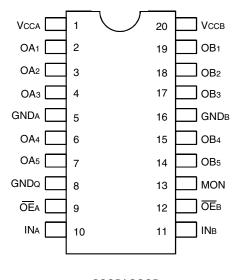
FEATURES:

- · Advanced CMOS Technology
- Guaranteed low skew < 200ps (max.)
- Very low propagation delay < 2.5ns (max)
- Very low duty cycle distortion < 270ps (max)
- · Very low CMOS power levels
- · Operating frequency up to 166MHz
- · TTL compatible inputs and outputs
- Inputs can be driven from 3.3V or 5V components
- · Two independent output banks with 3-state control
- 1:5 fanout per bank
- · "Heartbeat" monitor output
- $VCC = 3.3V \pm 0.3V$
- · Available in SSOP and QSOP packages


DESCRIPTION:


The FCT3805 is a 3.3 volt clock driver built using advanced CMOS technology. The device consists of two banks of drivers, each with a 1:5 fanout and its own output enable control. The device has a "heartbeat" monitor for diagnostics and PLL driving. The MON output is identical to all other outputs and complies with the output specifications in this document. The FCT3805 offers low capacitance inputs.

The FCT3805 is designed for high speed clock distribution where signal quality and skew are critical. The FCT3805 also allows single point-to-point transmission line driving in applications such as address distribution, where one signal must be distributed to multiple recievers with low skew and high signal quality.


For more information on using the FCT3805 with two different input frequencies on bank A and B, please see AN-236.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SSOP/ QSOP TOP VIEW

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
Vcc	Input Power Supply Voltage	-0.5 to +4.6	V
Vı	InputVoltage	-0.5 to +5.5	V
Vo	Output Voltage	-0.5 to Vcc+0.5	V
TJ	Junction Temperature	150	°C
Tstg	Storage Temperature	-65 to +165	°C

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
OEA, OEB	3-State Output Enable Inputs (Active LOW)
INA, INB	Clock Inputs
OAn, OBn	Clock Outputs
MON	Monitor Output

FUNCTION TABLE (1)

Inpu	uts	Outputs		
OEA, OEB	INA, INB	OAn, OBn	MON	
L	L	L	L	
L	Н	Н	Н	
Н	L	Z	L	
Н	Н	Z	Н	

NOTE:

- 1. H = HIGH
 - L = LOW
 - Z = High-Impedance

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	3	4	pF
Соит	Output Capacitance	Vout = 0V	_	6	pF

NOTE:

1. This parameter is measured at characterization but not tested.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified Industrial: Ta = -40°C to +85°C, Vcc = $3.3V \pm 0.3V$

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level			2	_	5.5	V
VIL	Input LOW Level			-0.5	_	0.8	V
Iн	Input HIGH Current	Vcc = Max.	VI = 5.5V	_	_	±1	
lıL	Input LOW Current	Vcc = Max.	VI = GND	<u> </u>	_	±1	μΑ
lozн	High Impedance Output Current	Vcc = Max.	Vo = Vcc	_	_	±1	1
lozl	(3-State Outputs Pins)		Vo = GND	_	_	±1	1
Vik	Clamp Diode Voltage	VCC = Min., IIN = -18mA		_	-0.7	-1.2	V
lodh	Output HIGH Current	$VCC = 3.3V$, $VIN = VIH or VIL$, $VO = 1.5V^{(3,4)}$		-45	-74	-180	mA
IODL	Output LOW Current	$VCC = 3.3V$, $VIN = VIH \text{ or } VIL$, $VO = 1.5V^{(3,4)}$		50	90	200	mA
los	Short Circuit Current	Vcc = Max., Vo = GNE)(3,4)	-60	-135	-240	mA
Vон	Output HIGH Voltage	Vcc = Min.	Iон = -12mA	2.4 ⁽⁵⁾	3	_	
		VIN = VIH or VIL	IOH = -8mA	2.4 ⁽⁵⁾	3	_	V
			IOH = -100μA	Vcc - 0.2		_	
Vol	Output LOW Voltage	Vcc = Min.	IoL = 12mA	_	0.3	0.4	
		VIN = VIH or VIL	IOL = 8mA	_	0.2	0.4	V
			IoL = 100μA	_	_	0.2	

NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 3.3V, 25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. This parameter is guaranteed but not tested.
- 5. VoH = Vcc -0.6V at rated current.

POWER SUPPLY CHARACTERISTICS

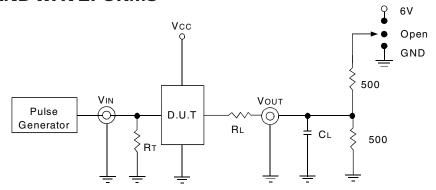
Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
ICCL	Quiescent Power Supply Current	Vcc = Max.		_	0.1	30	μA
Іссн		VIN = GND or Vcc					
Iccz							
Δlcc	Power Supply Current per Input HIGH	Vcc = Max.		_	45	300	μΑ
		VIN = VCC -0.6V					
ICCD	Dynamic Power Supply Current	Vcc = Max.	VIN = VCC	_	80	120	μA/MHz
	per Output ⁽³⁾	CL = 15pF	VIN = GND				
		All Outputs Toggling					
Ic	Total Power Supply Current ⁽⁴⁾	Vcc = Max.	VIN = VCC	_	125	150	
		CL = 15pF	VIN = GND				
		All Outputs Toggling	VIN = VCC -0.6V	_	125	150	
		fi = 133MHz	VIN = GND				mA
		Vcc = Max.	VIN = VCC	_	155	195	
		CL = 15pF	VIN = GND				
		All Outputs Toggling	VIN = VCC -0.6V	_	160	195	
		fi = 166MHz	VIN = GND				

NOTES:

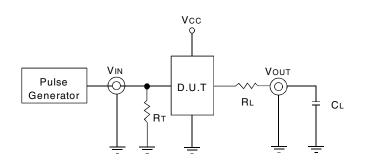
- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.
- 3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
- 4. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (foNo)$
 - Icc = Quiescent Current (IccL, IccH and Iccz)
 - Δ Icc = Power Supply Current for a TTL High Input (VIN = Vcc -0.6V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fo = Output Frequency
 - No = Number of Outputs at fo

SWITCHING CHARACTERISTICS OVER OPERATING RANGE - 3805D (3,4)

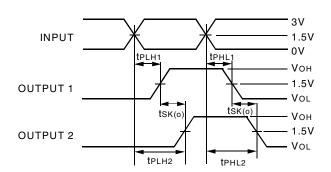
Symbol	Parameter	Conditions ⁽¹⁾	Min. ⁽²⁾	Max.	Unit
t PLH	Propagation Delay	CL = 15pF	1	3	ns
t PHL	INA to OAn, INB to OBn	f ≤133MHz			
₽	Output Rise Time (0.8V to 2V)		_	1.5	ns
tF	Output Fall Time (2V to 0.8V)		_	1.5	ns
tsk(o)	Same device output pin to pin skew ⁽⁵⁾		_	270	ps
tsk(p)	Pulse skew ^(6,9)		_	270	ps
tsk(PP)	Part to part skew ⁽⁷⁾		_	550	ps
tpzl	Output Enable Time		_	5.2	ns
tpzh	OEA to OAn, OEB to OBn				
tPLZ	Output Disable Time		_	5.2	ns
tphz	OEA to OAn, OEB to OBn				
fMAX	Input Frequency		_	133	MHz


SWITCHING CHARACTERISTICS OVER OPERATING RANGE - 3805E (3,4)

Symbol	Parameter	Conditions ^(1,8)	Min. ⁽²⁾	Max.	Unit
tplH	Propagation Delay	CL = 15pF	0.5	2.5	ns
t PHL	INA to OAn, INB to OBn	f ≤166MHz			
tr	Output Rise Time (0.8V to 2V)		_	1	ns
tF	Output Fall Time (2V to 0.8V)		-	1	ns
tsk(o)	Same device output pin to pin skew ⁽⁵⁾		_	200	ps
tsk(p)	Pulse skew ^(6,9)		_	270	ps
tsk(PP)	Part to part skew ⁽⁷⁾		_	550	ps
tpzl	Output Enable Time		_	5.2	ns
tpzh	OEA to OAn, OEB to OBn				
tplz	Output Disable Time		_	5.2	ns
tphz	OEA to OAn, OEB to OBn				
fMAX	Input Frequency		_	166	MHz


NOTES:

- 1. See test circuits and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. tplh, tphl, tsk(p), and tsk(o) are production tested. All other parameters guaranteed but not production tested.
- 4. Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature and process parameters. These propagation delay limits do not imply skew.
- 5. Skew measured between all outputs under identical transitions and load conditions.
- 6. Skew measured is difference between propagation delay times tPHL and tPLH of same outputs under identical load conditions.
- 7. Part to part skew for all outputs given identical transitions and load conditions at identical Vcc levels and temperature.
- 8. Airflow of 1m/s is recommended for frequencies above 133MHz.
- 9. This parameter is measured using f = 1MHz.


TEST CIRCUITS AND WAVEFORMS

Enable and Disable Time Circuit

CL = 15pF Test Circuit

tSK(o) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

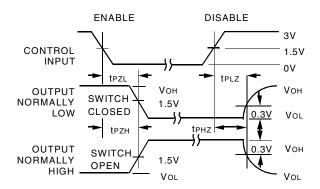
Output Skew - tsk(0)

SWITCH POSITION

Test	Switch
Disable Low Enable Low	6V
Disable High Enable High	GND

TEST CONDITIONS

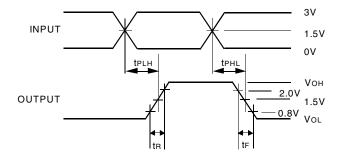
Symbol	$Vcc = 3.3V \pm 0.3V$	Unit
CL	15	pF
RT	Zout of pulse generator	Ω
RL	33	Ω
tr/tr	1 (0V to 3V or 3V to 0V)	ns

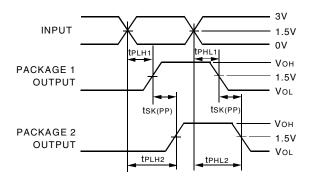

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

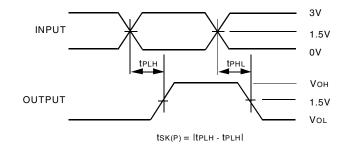
tr / tr = Rise/Fall time of the input stimulus from the Pulse Generator.


TEST CIRCUITS AND WAVEFORMS

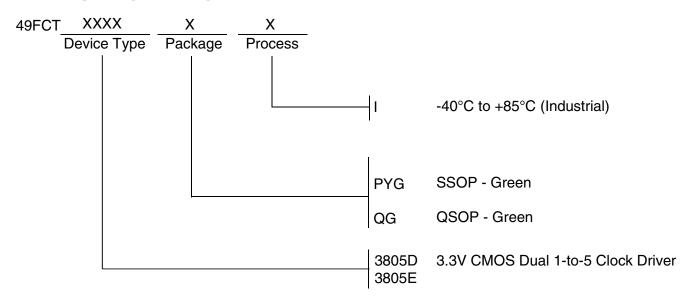

Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH


Propagation Delay

tsk(PP) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


Part-to-Part Skew - tSK(PP)

Part-to-Part Skew is for the same package and speed grade.

Pulse Skew

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Drivers & Distribution category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C 6ES7212-1AF40-0XB0 EC4P-221-MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ AD9511BCPZ AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515B