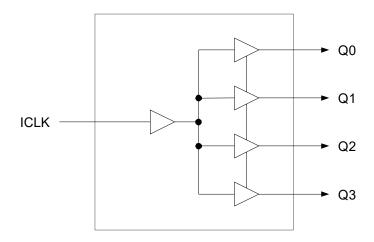


DATASHEET

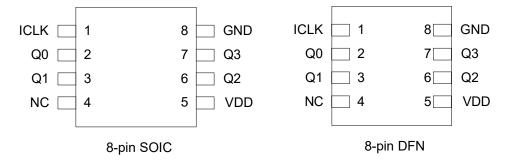
Description


The 524S is a low skew, single input to four output, clock buffer. The 524S has best in class additive phase jitter of sub 50 fsec. The 524S is Power Down Tolerant (PDT). PDT designated inputs may be driven before VDD is applied, without damage to the device.

Renesas makes many non-PLL and PLL based low skew output devices as well as Zero Delay Buffers to synchronize clocks. Contact us for all of your clocking needs.

Features

- Low additive phase jitter RMS: 50fs
- Extremely low skew outputs (50ps)
- Low cost clock buffer
- · Packaged in 8-SOIC and 8-DFN, Pb-free
- ICLK is PDT and may be driven before VDD is applied
- Direct-coupled signal path suitable for 1pps clocks
- Input/Output clock frequency up to 200MHz
- Non-inverting output clock
- · Ideal for networking clocks
- Operating Voltages: 1.8V to 3.3V
- Advanced, low power CMOS process
- Extended temperature range (-40°C to +105°C)


Block Diagram

1

Pin Assignments

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description			
1	ICLK	Input	Clock input. This pin is Power Down Tolerant (PDT).			
2	Q0	Output	Clock output 0.			
3	Q1	Output	Clock output 1.			
4	NC	-	No connect.			
5	VDD	Power	Connect to +1.8V, +2.5 V, or +3.3 V.			
6	Q2	Output	Clock Output 2.			
7	Q3	Output	Clock Output 3.			
8	GND	Power	Connect to ground.			

External Components

A minimum number of external components are required for proper operation. A decoupling capacitor of $0.01\mu F$ should be connected between VDD on pin 5 and GND on pin 8, as close to the device as possible. A 33Ω series terminating resistor may be used on each clock output if the trace is longer than 1 inch.

To achieve the low output skew that the 524S is capable of, careful attention must be paid to board layout. Essentially, all four outputs must have identical terminations, identical loads and identical trace geometries. If they do not, the output skew will be degraded. For example, using a 30Ω series termination on one output (with 33Ω on the others) will cause at least 15ps of skew.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 524S. These ratings, which are standard values for Renesas commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	3.465V
Outputs	-0.5 V to VDD+0.5 V
ICLK	3.465V
Ambient Operating Temperature (extended)	-40° to +105°C
Storage Temperature	-65° to +150°C
Junction Temperature	125°C
Soldering Temperature	260°C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature (extended)	-40		+105	°C
Power Supply Voltage (measured in respect to GND)	+1.71		+3.465	V

DC Electrical Characteristics

(VDD = 1.8V, 2.5V, 3.3V)

VDD = 1.8V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		1.71		1.89	V
Input High Voltage, ICLK	V _{IH}	Note 1	0.7xVDD		3.465	V
Input Low Voltage, ICLK	V _{IL}	Note 1			0.3xVDD	V
Output High Voltage	V _{OH}	I _{OH} = -10mA	1.3			V
Output Low Voltage	V _{OL}	I _{OL} = 10mA			0.35	V
Operating Supply Current	IDD	No load, 135MHz		16		mA
Nominal Output Impedance	Z _O			17		Ω
Input Capacitance	C _{IN}	ICLK		5		pF

Notes: 1. Nominal switching threshold is VDD/2.

VDD = 2.5 V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		2.375		2.625	V
Input High Voltage, ICLK	V _{IH}	Note 1	0.7xVDD		3.465	V
Input Low Voltage, ICLK	V _{IL}	Note 1			0.3xVDD	V
Output High Voltage	V _{OH}	I _{OH} = -16mA	1.8			V
Output Low Voltage	V _{OL}	I _{OL} = 16mA			0.5	V
Operating Supply Current	IDD	No load, 135MHz		18		mA
Nominal Output Impedance	Z _O			17		Ω
Input Capacitance	C _{IN}	ICLK		5		pF

VDD = 3.3 V ±5%, Ambient temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.15		3.45	V
Input High Voltage, ICLK	V _{IH}	Note 1	0.7xVDD		3.465	V
Input Low Voltage, ICLK	V _{IL}	Note 1			0.3xVDD	V
Output High Voltage	V _{OH}	I _{OH} = -25mA	2.2			V
Output Low Voltage	V _{OL}	I _{OL} = 25mA			0.7	V
Operating Supply Current	IDD	No load, 135MHz		22		mA
Nominal Output Impedance	Z _O			17		Ω
Input Capacitance	C _{IN}	ICLK		5		pF

AC Electrical Characteristics

(VDD = 1.8V, 2.5V, 3.3V)

VDD = 1.8V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.36 to 1.44 V, C _L = 5pF		0.6	1.0	ns
Output Fall Time	t _{OF}	1.44 to 0.36 V, C _L = 5pF		0.6	1.0	ns
Propagation Delay		Note 1	1.5	2	4	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12kHz–20MHz			0.05	ps
Output to Output Skew		Rising edges at VDD/2, Note 2			65	ps
Device to Device Skew		Rising edges at VDD/2			200	ps
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms

VDD = 2.5 V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.5 to 2.0 V, C _L = 5pF		0.6	1.0	ns
Output Fall Time	t _{OF}	2.0 to 0.5 V, C _L = 5pF		0.6	1.0	ns
Propagation Delay		Note 1	1.8	2.5	4.5	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12kHz–20MHz			0.05	ps
Output to Output Skew		Rising edges at VDD/2, Note 2			65	ps
Device to Device Skew		Rising edges at VDD/2			200	ps
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms

VDD = 3.3 V ±5%, Ambient Temperature -40° to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.66 to 2.64 V, C _L = 5pF		0.6	1.0	ns
Output Fall Time	t _{OF}	2.64 to 0.66 V, C _L = 5pF		0.6	1.0	ns
Propagation Delay		Note 1	1.5	2	4	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12kHz–20MHz			0.05	ps
Output to Output Skew		Rising edges at VDD/2, Note 2			65	ps
Device to Device Skew		Rising edges at VDD/2			200	ps
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms

Notes:

- 1. With rail to rail input clock.
- 2. Between any 2 outputs with equal loading.
- 3. Duty cycle on outputs will match incoming clock duty cycle. Consult Renesas for tight duty cycle clock generators.

Phase Noise Plots

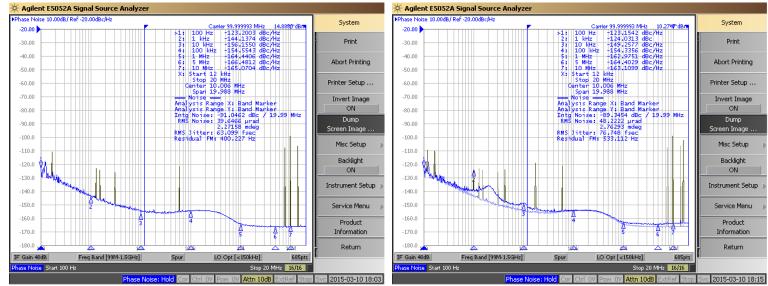
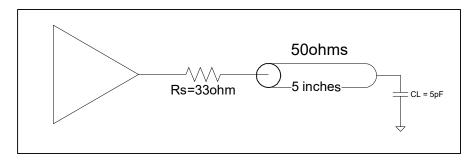
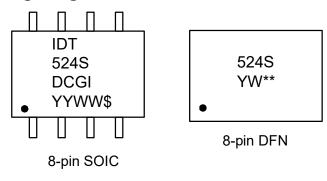



Figure 1. 524S Reference Phase Noise 63fs (12kHz to 20MHz)

Figure 2. 524S Output Phase Noise 76fs (12kHz to 20MHz)

The phase noise plots above show the low Additive Jitter of the 524S high-performance buffer. With an integration range of 12kHz to 20MHz, the reference input has about 63fs of RMS phase jitter while the output of 524S has about 76fs of RMS phase jitter. This results in a low Additive Phase Jitter of only 42fs.

Test Load and Circuit



Thermal Characteristics (8SOIC)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to Ambient	θ_{JA}	Still air		150		°C/W
	θ_{JA}	1 m/s air flow		140		°C/W
	θ_{JA}	3 m/s air flow		120		°C/W
Thermal Resistance Junction to Case	θ_{JC}			40		°C/W

Marking Diagrams

Notes:

- 1. "**" is the lot number.
- 2. "YYWW" or "YW" are the last digits of the year and week that the part was assembled.
- 3 "G" denotes RoHS compliant package.
- 4. "\$" denotes the mark code.
- 5. "I" denotes extended temperature range device.

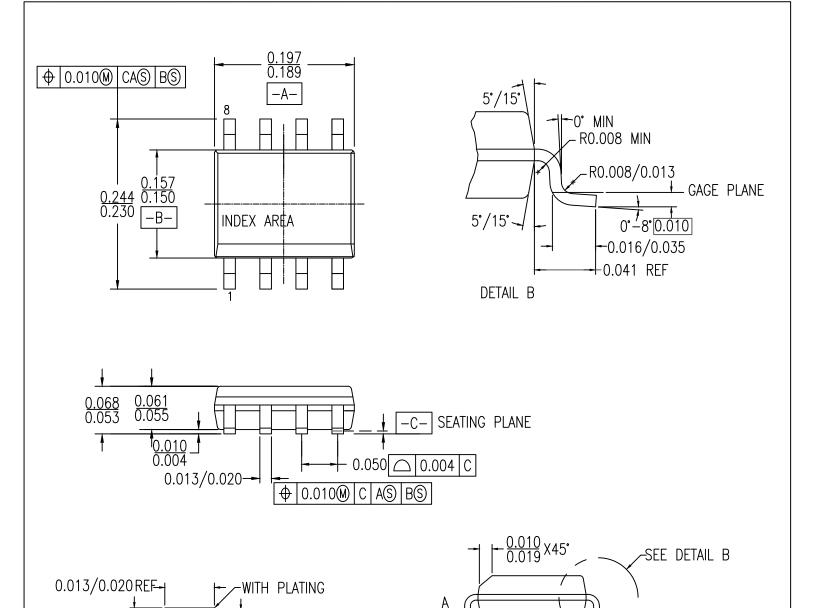
Package Outline Drawings

The package outline drawings are located at the end of this document and are accessible from the Renesas website (see Ordering Information for POD links). The package information is the most current data available and is subject to change without revision of this document.

Ordering Information

Orderable Part Number	Carrier Type	Package	Temperature
524SDCGI	Tubes	8-SOIC	-40° to +105°C
524SDCGI8	Tape and Reel	8-SOIC	-40° to +105°C
524SCMGI	Cut Tape	8-DFN	-40° to +105°C
524SCMGI8	Tape and Reel	8-DFN	-40° to +105°C

[&]quot;G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.


Revision History

Revision Date	Description
August 9, 2021	Updated front page description and features.
	Updated "Input High Voltage, ICLK" maximum ratings for 1.8V, 2.5V, and 3.3V.
	Updated Package Outline Drawings and Ordering Information sections.
March 18, 2015	Initial release.

8-SOIC Package Outline Drawing

0.150" Body Width, 0.050" Pitch DCG8D1, PSC-4068-01, Rev 01, Page 1

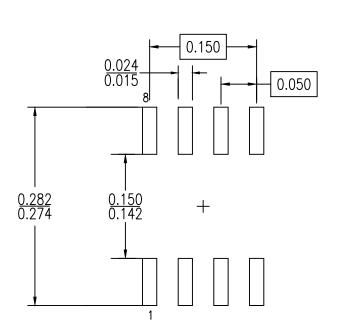
NOTES:

0.0075/0.0095

0.013/0.019-

- 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982
- 2. ALL DIMENSIONS ARE IN INCHES

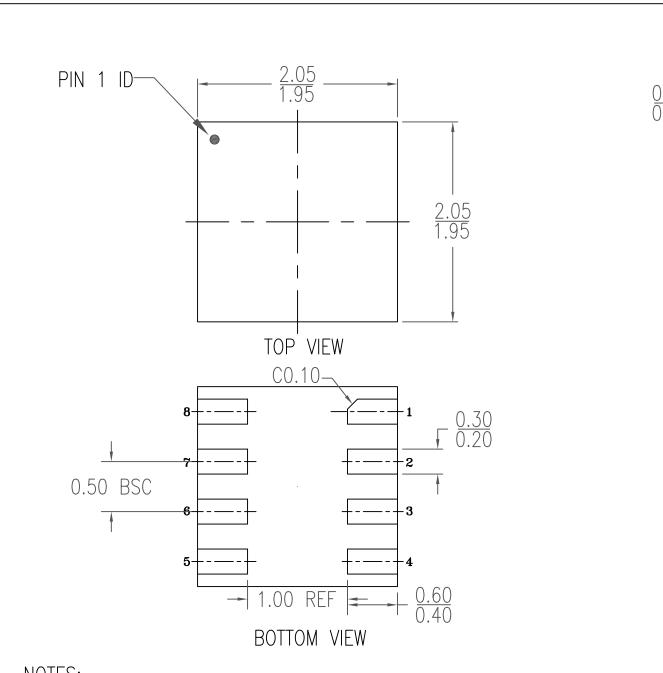
SECTION A-A

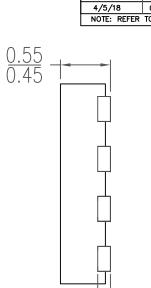

0.0075/0.0085

BASE METAL

8-SOIC Package Outline Drawing

0.150" Body Width, 0.050" Pitch DCG8D1, PSC-4068-01, Rev 01, Page 2




RECOMMENDED LAND PATTERN DIMENSION

NOTES:

- 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982
- 2. ALL DIMENSIONS ARE IN INCHES

Package Revision History			
Date Created	Rev No.	Description	
July 27, 2018	Rev 01	Dedicate to Package DCG8 Only	
Feb 24, 2016	Rev 00	Initial Release	

SIDE VIEW

09/18/14

NOTES:

1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982

2. ALL DIMENSIONS ARE IN MILLIMETERS

TOLERANCES
UNLESS SPECIFIED
DECIMAL ANGUL
XX± ±
XXXX±
XXXXX±

DATE CREATED	R
09/18/14	Г
4/5/18	Г
NOTE, DECED	Ŧ

RECOMMENDED LAND PATTERN DIMENSION

NOTES:

- 1. ALL DIMENSION ARE IN MM. ANGLES IN DEGREES. 2. TOP DOWN VIEW. AS VIEWED.
- 3. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR MOUNT DESIGN AND LAND PATTERN.

TOLERANCES UNLESS SPECIFIED

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE. OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T
PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX
PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG
NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2