LOW SKEW 1 TO 4 CLOCK BUFFER

Description

The ICS553 is a low skew, single input to four output, clock buffer. Part of IDT's ClockBlocks ${ }^{\text {TM }}$ family, this is our lowest skew, small clock buffer.

See the ICS552-02 for a 1 to 8 low skew buffer. For more than eight outputs, see the MK74CBxxx Buffalo ${ }^{\text {TM }}$ series of clock drivers.

IDT makes many non-PLL and PLL based low skew output devices as well as Zero Delay Buffers to synchronize clocks. Contact us for all of your clocking needs.

Features

- Extremely low skew outputs (50 ps maximum)
- Packaged in 8-pin SOIC
- Pb (lead) free package
- Low power CMOS technology
- Operating voltages of 2.5 V to 5 V
- Output Enable pin tri-states outputs
- 5 V tolerant input clock
- Commercial (0 to $+70^{\circ} \mathrm{C}$) and Industrial (-40 to $+85^{\circ} \mathrm{C}$) temperature ranges available

Block Diagram

Pin Assignment

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	VDD	Power	Connect to $+2.5 \mathrm{~V},+3.3 \mathrm{~V}$ or +5.0 V.
2	Q0	Output	Clock output 0.
3	Q1	Output	Clock output 1.
4	GND	Power	Connect to ground.
5	ICLK	Input	Clock input, 5 V tolerant input.
6	Q2	Output	Clock Output 2.
7	Q3	Output	Clock Output 3.
8	OE	Input	Output Enable. Tri-states outputs when low. Connect to VDD for normal operation.

External Components

A minimum number of external components are required for proper operation. A decoupling capacitor of $0.01 \mu \mathrm{~F}$ should be connected between VDD on pin 1 and GND on pin 4, as close to the device as possible. A 33Ω series terminating resistor may be used on each clock output if the trace is longer than 1 inch.

To achieve the low output skew that the ICS553 is capable of, careful attention must be paid to board layout. Essentially, all four outputs must have identical terminations, identical loads and identical trace geometries. If they do not, the output skew will be degraded. For example, using a 30Ω series termination on one output (with 33Ω on the others) will cause at least 15 ps of skew.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS553. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	7 V
Output Enable and All Outputs	-0.5 V to VDD +0.5 V
ICLK	-0.5 V to 5.5 V
Ambient Operating Temperature (commercial)	0 to $+70^{\circ} \mathrm{C}$
Ambient Operating Temperature (industrial)	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Junction Temperature	$125^{\circ} \mathrm{C}$
Soldering Temperature	$260^{\circ} \mathrm{C}$

Recommended Operation Conditions

Parameter	Min.	Typ.	Max.	Units
Ambient Operating Temperature (commercial)	0		+70	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature (industrial)	-40		+85	${ }^{\circ} \mathrm{C}$
Power Supply Voltage (measured in respect to GND)	+2.375		+5.25	V

DC Electrical Characteristics

VDD $=2.5 \mathrm{~V} \pm 5 \%$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Operating Voltage	VDD		2.375		2.625	V
Input High Voltage, ICLK	V_{IH}	Note 1	$\mathrm{VDD} / 2+0.5$		5.5	V
Input Low Voltage, ICLK	V_{IL}	Note 1			$\mathrm{VDD} / 2-0.5$	V
Input High Voltage, OE	V_{IH}		1.8		VDD	V
Input Low Voltage, OE	V_{IL}				0.7	V
Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA}$	2			V
Output Low Voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$			0.4	V
Operating Supply Current	IDD	No load, 135 MHz		25		mA
Nominal Output Impedance	Z_{O}			20		Ω
Input Capacitance	C_{IN}	ICLK, OE pin		5		pF
Short Circuit Current	I_{OS}			± 28		mA

DC Electrical Characteristics (continued)

VDD $=3.3 \mathrm{~V} \pm 5 \%$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Operating Voltage	VDD		3.15		3.45	V
Input High Voltage, ICLK	V_{IH}	Note 1	$\mathrm{VDD} / 2+0.7$		5.5	V
Input Low Voltage, ICLK	V_{IL}	Note 1			$\mathrm{VDD} / 2-0.7$	V
Input High Voltage, OE	V_{IH}		2		VDD	V
Input Low Voltage, OE	V_{IL}				0.8	V
Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-25 \mathrm{~mA}$	2.4			V
Output Low Voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}$			0.4	V
Output High Voltage (CMOS Level)	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	$\mathrm{VDD}-0.4$			V
Operating Supply Current	IDD	No load, 135 MHz		35		mA
Nominal Output Impedance	Z_{O}			20		Ω
Input Capacitance	C_{IN}	$\mathrm{ICLK}, \mathrm{OE} \mathrm{pin}$		5		pF
Short Circuit Current	I_{OS}			± 50		mA

VDD $=5 \mathrm{~V} \pm 5 \%$, Ambient temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Operating Voltage	VDD		4.75		5.25	V
Input High Voltage, ICLK	V_{IH}	Note 1	$\mathrm{VDD} / 2+1$		5.5	V
Input Low Voltage, ICLK	V_{IL}	Note 1			$\mathrm{VDD} / 2-1$	V
Input High Voltage, OE	V_{IH}		2		VDD	V
Input Low Voltage, OE	V_{IL}				0.8	V
Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-35 \mathrm{~mA}$	2.4			V
Output Low Voltage	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=35 \mathrm{~mA}$			0.4	V
Output High Voltage (CMOS Level)	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	$\mathrm{VDD}-0.4$			V
Operating Supply Current	IDD	No load, 135 MHz		45		mA
Nominal Output Impedance	Z_{O}			20		Ω
Input Capacitance	C_{IN}	$\mathrm{ICLK}, \mathrm{OE}$ pin		5		pF
Short Circuit Current	I_{OS}			± 80		mA

Notes: 1. Nominal switching threshold is VDD/2

AC Electrical Characteristics

VDD $=2.5 \mathrm{~V} \pm 5 \%$, Ambient Temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t_{OR}	0.8 to $2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		1.0	1.5	ns
Output Fall Time	t_{OF}	2.0 to $0.8 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		1.0	1.5	ns
Propagation Delay	Note 1		2.2	3	5	ns
Additive Period Jitter					1	ps
Output to Output Skew	Note 2	Rising edges at VDD/2		0	50	ps
Device to Device Skew		Rising edges at VDD/2			500	ps

VDD $=3.3 \mathrm{~V} \pm 5 \%$, Ambient Temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t_{OR}	0.8 to $2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		0.6	1.0	ns
Output Fall Time	t_{OF}	2.0 to $0.8 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		0.6	1.0	ns
Propagation Delay	Note 1		2.0	2.4	4	ns
Additive Period Jitter					1	ps
Output to Output Skew	Note 2	Rising edges at VDD/2		0	50	ps
Device to Device Skew		Rising edges at VDD/2			500	ps

VDD $=5 \mathrm{~V} \pm \mathbf{5 \%}$, Ambient Temperature -40 to $+85^{\circ} \mathrm{C}$, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t_{OR}	0.8 to $2.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		0.3	0.7	ns
Output Fall Time	t_{OF}	2.0 to $0.8 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		0.3	0.7	ns
Propagation Delay	Note 1		1.8	2.5	4	ns
Additive Period Jitter					1	ps
Output to Output Skew	Note 2	Rising edges at VDD/2		0	50	ps
Device to Device Skew		Rising edges at VDD/2			500	ps

Notes: 1. With rail to rail input clock
2. Between any 2 outputs with equal loading.
3. Duty cycle on outputs will match incoming clock duty cycle. Consult IDT for tight duty cycle clock generators.

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Thermal Ambient	$\theta_{\text {JA }}$	Still air		150		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA }}$	$1 \mathrm{~m} / \mathrm{s}$ air flow		140		${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$\theta_{\text {JA }}$	$3 \mathrm{~m} / \mathrm{s}$ air flow		120		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	$\theta_{\text {JC }}$			40		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Marking Diagrams

Notes:

1. "LOT" is the lot number.
2. YYWW is the last two digits of the year and week that the part was assembled.

3 "LF" denotes RoHS compliant package.
4. "I" denotes industrial temperature range device.
5. Bottom marking: country of origin.

Package Outline and Package Dimensions (8-pin Soic, 150 mil. Narrow Body)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
553 MLF	553 MLF	Tubes	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
553 MLFT	553 MLF	Tape and Reel	8 -pin SOIC	0 to $+70^{\circ} \mathrm{C}$
553 MILF	553 MILF	Tubes	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$
553 MILFT	553 MILF	Tape and Reel	8 -pin SOIC	-40 to $+85^{\circ} \mathrm{C}$

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX

PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG

NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2

