RENESAS

VERSACLOCK[®] LOW POWER CLOCK GENERATOR

IDT5P49EE602

Description

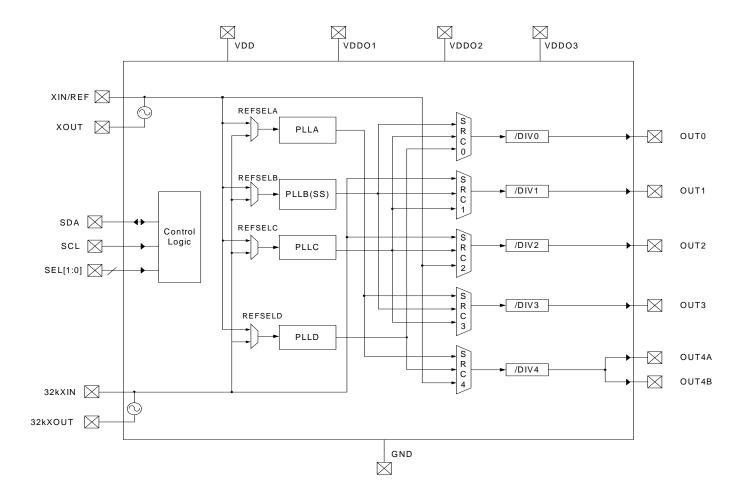
The IDT5P49EE602 is a programmable clock generator intended for low power, battery operated consumer applications. There are four internal PLLs, each individually programmable, allowing for up to six differrent output frequencies. The frequencies are generated from a single reference clock. The reference clock can come from either a TCXO or fundamental mode crystal. An additional 32.768kHz crystal oscillator is available to provide a real time clock or non-critical performance MHz processor clock.

The IDT5P49EE602 can be programmed through the use of the l^2C interfaces. The programming interface enables the device to be programmed when it is in normal operation or what is commonly known as in system programmable. An internal EEPROM allows the user to save and restore the configuration of the device without having to reprogram it on power-up.

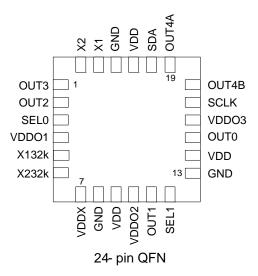
Each of the four PLLs has an 8-bit reference divider and a 11-bit feedback divider. This allows the user to generate four unique non-integer-related frequencies. The PLL loop bandwidth is programmable to allow the user to tailor the PLL response to the application. For instance, the user can tune the PLL parameters to minimize jitter generation or to maximize jitter attenuation.

Spread spectrum generation is supported on one of the PLLs. The device is specifically designed to work with display applications to ensure that the spread profile remains consistent for each HSYNC in order to reduce ROW noise. It also may operate in standard spread sepctrum mode.

There are total five 8-bit output dividers. The outputs are connected to the PLLs via the switch matrix. The switch matrix allows the user to route the PLL outputs to any output bank. This feature can be used to simplify and optimize the board layout. In addition, each output's slew rate and enable/disable function can be programmed.


Target Applications

- Smart Mobile Handset
- Personal Navigation Device (PND)
- Camcorder
- DSC
- Portable Game Console
- Personal Media Player


Features

- Four internal PLLs
- Internal non-volatile EEPROM
 - Internal I²C EEPROM master interface
- FAST (400kHz) mode I²C serial interfaces
- Input Frequencies
 - TCXO: 10 MHz to 40 MHz
 - Crystal: 8 MHz to 30 MHz
 - RTC Crystal: 32.768 kHz
- Output Frequency Ranges: kHz to 120 MHz
- Each PLL has an 8-bit reference divider and a 11-bit feedback-divider
- 8-bit output-divider blocks
- One of the PLLs support Spread Spectrum generation capable of configuration to pixel rate, with adjustable modulation rate and amplitude to support video clock with no visible artifacts
- I/O Standards:
 Outputs 1.8V/2.5V/3.3 V LVTTL/ LVCMOS
- 3 independent adjustable VDDO groups.
- Programmable Slew Rate Control
- Programmable Loop Bandwidth Settings
- Programmable output inversion to reduce bimodal jitter
- Individual output enable/disable
- Power-down/Sleep mode
 - $-10\mu A$ max in power down mode
 - 32kHz clock output active sleep mode
 - 100µA max in sleep mode
- 1.8V VDD Core Voltage
- Available in 24pin 4x4mm QFN packages
- -40 to +85 C Industrial Temp operation

Functional Block Diagram

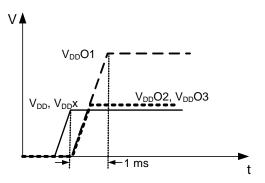
Pin Assignment

Pin Descriptions

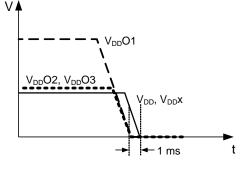
Pin Name	Pin #	I/O	Pin Type	Pin Description
OUT3	1	0	Adjustable	Configurable clock output 3. Single-ended output voltage levels are register controlled by either VDDO1, VDDO2 or VDDO3.
OUT2	2	0	Adjustable	Configurable clock output 2. Single-ended output voltage levels are register controlled by either VDDO1, VDDO2 or VDDO3.
SEL0*	3	I	LVTTL	Configuration select pin. Weak internal pull down resistor.
VDDO1	4		Power	Device power supply. Connect to 1.8 to 3.3V. Using register settings, select output voltage levels for OUT0-OUT4. VDDO1 must be greater than or equal to both VDDO2 and VDDO3.
X132k	5	I	LVTTL	32kHz CRYSTAL_IN Reference crystal input
X232k	6	0	LVTTL	32kHz CRYSTAL_OUT Reference crystal feedback.
VDDx	7		Power	Crystal oscillator power supply. Connect to 1.8V. Use filtered analog power supply if available.
GND	8		Power	Connect to Ground.
VDD	9		Power	Device power supply. Connect to 1.8V.
VDDO2	10		Power	Device power supply. Connect to 1.8 to 3.3V. Using register settings, select output voltage levels for OUT0-OUT3. VDDO2 must be equal or less than VDDO1.
OUT1	11	0	Adjustable	Configurable clock output 1. Single-ended output voltage levels are register controlled by either VDDO1, VDDO2 or VDDO3.
SEL1*	12	I	LVTTL	Configuration select pin. Weak internal pull down resistor.

GND	13		Power	Connect to Ground.		
VDD	14		Power	Device power supply. Connect to 1.8V.		
OUT0	15	0	Adjustable	Configurable clock output 0. Single-ended output voltage levels are register controlled by either VDDO1, VDDO2 or VDDO3.		
VDDO3	16		Power	Device power supply. Connect to 1.8 to 3.3V. Using register settings, select output voltage levels for OUT0/3/6/7/8/9. VDDO3 must be equal or less than VDDO1.		
SCLK	17	Ι	LVTTL	I ² C clock. Logic levels set by VDDO1. 5V tolerant.		
OUT4B	18	0	Adjustable	e Configurable clock output 4B. Output voltage levels are controlled by VDDO1.		
OUT4A	19	0	Adjustable	Configurable clock output 4A. Output voltage levels are controlled by VDDO1.		
SDA	20	I/O	Open Drain	Bidirectional I ² C data. Logic levels set by VDDO1. 5V tolerant.		
VDD	21		Power	Device power supply. Connect to 1.8V.		
GND	22		Power	Connect to Ground.		
XIN/ REF	23	I	LVTTL	MHz CRYSTAL_IN Reference crystal input or external reference clock input. Maximum clock input voltage is 1.8V.		
XOUT	24	0	LVTTL	MHz CRYSTAL_OUT Reference crystal feedback. Float pin if using reference input clock.		

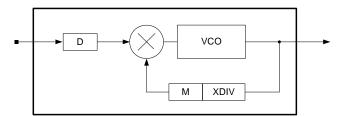
Note *: SEL pins should be controlled by 1.8V LVTTL logic; 3.3V tolerant.


Note 1: Outputs are user programmable to drive single-ended 1.8V/2.5V/3.3V LVTTL as indicated above.

Note 2: Default configuration CLK3=Buffered Reference output. All other outputs are off.


Note 3: Do not power up with SEL[1:0] = 00 (in Power down/Sleep mode).

Ideal Power Up Sequence


- 1) V_{DD} and $V_{DD}x$ must come up first, followed by $V_{DD}O$
- 2) V_{DD}O1 must come up within 1ms after VDD and VDDX come up
- 3) $V_{DD}O2/3$ must be equal to, or lower than, $V_{DD}O1$
- 4) V_{DD} and $V_{DD}x$ have approx. the same ramp rate
- 5) $V_{DD}O1$ and $V_{DD}O2/3$ have approx. same ramp rate

- **Ideal Power Down Sequence**
- 1) $V_{DD}O$ must drop first, followed by V_{DD} and $V_{DD}x$
- 2) V_{DD} and $V_{DD}x$ must come down within 1ms after $V_{DD}O1$ comes down
- 3) $V_{DD}O2/3$ must be equal to, or lower than, $V_{DD}O1$
- 4) V_{DD} and $V_{DD}x$ have approx. the same ramp rate
- 5) $V_{DD}O1$ and $V_{DD}O2/3$ have approx. same ramp rate

PLL Features and Descriptions

PLL Block Diagram

	Ref-Divider (D) Values	Feedback Pre-Divider (XDIV) Values	Feedback (M) Values	Programmable Loop Bandwidth	Spread Spectrum Generation Capability
PLLA	1 - 255	1 or 4	6 - 2047	Yes	No
PLLB	1 - 255	4	6 - 2047	Yes	Yes
PLLC	1 - 255	1 or 8 bit divide	6 - 2047	Yes	No
PLLD	1 - 255	1 or 4	6 - 2047	Yes	No

Crystal Input (XIN/REF)

The crystal oscillators should be fundamental mode quartz crystals; overtone crystals are not suitable. Crystal frequency should be specified for parallel resonance with 50Ω maximum equivalent series resonance. 0

ONXTALB=0 bit needs to be set for XIN/REF.

Crystal Load Capacitors

The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device. Crystal capacitors must be connected from each of the pins X1 and X2 to ground.

The crystal cpacitors are internal to the device and have an effective value of 4pF.

Reference Pre-Divider, Reference Divider, Feedback-Divider and Post-Divider

Each PLL incorporates an 8-bit reference-scaler and a 11-bit feedback divider which allows the user to generate four unique non-integer-related frequencies. PLLA and PLLD each have a feedback pre-divider that provides additional multiplication for kHz reference clock applications. Each output divider supports 8-bit post-divider. The following equation governs how the output frequency is calculated.

$$F_{OUT} = \frac{F_{IN} * \left(\frac{XDIV*M}{D}\right)}{ODIV} (Eq. 2)$$

Where F_{IN} is the reference frequency, XDIV is the feedback pre-divider value, M is the feedback-divider value, D is the reference divider value, ODIV is the total post-divider value, and F_{OUT} is the resulting output frequency. Programming any of the dividers may cause glitches on the outputs.

SPREAD SPECTRUM GENERATION (PLLB)

PLLB has spread spectrum generation capability, which users have the option of turning on and off. Spread spectrum profile, frequency, and spread are fully programmable (within limits). The programmable spread spectrum generation parameters are NC[10:0], MOD[12:0], and NSS[10:0] bits. To enable spread spectrum, set SSENB_B=0.

The spread spectrum circuitry was specifically developed to accommodate video display applications. The spread modulation frequency can be defined to exactly equal the horizontal line frequency (HSYNC)

NC[10:0]

These bits are used to determine the number of pulses per spread spectrum cycle. For video applications, NC is the number of pixels on the horizontal display row (or integer multiple of displayed pixels in a row). By matching the spread period to the screen, no tearing or "shimmer" will be apparent.

NC must be an even number to insure that the upward spread transition has the same number of steps as the downward spread transition.

For non-video applications, this can also be seen as the number of clock cycles for a complete spread spectrum period.

MOD[12:0]

These bits relate the reference frequency to the target average spread output frequency (F_{MID}). F_{MID} is the midpoint between F_{MAX} (maximum frequency) and F_{MIN} (minimum frequency).

 $F_{MID} = (F_{MAX} + F_{MIN}) / 2$

 $MOD = (F_{REF} * NC) / (2 * F_{MID})$

NSS[10:0]

These bits control the amplitude of the spread modulation.

NSS = (NC / 2) + (NC / 8) * ($F_{MAX} - F_{MIN}$) / F_{MID}

Modulation frequency:

 $F_{MOD} = F_{MID} / NC (Eq. 11)$

Video Example

 $F_{REF} = 25MHz$, $F_{OUT} = 27$ MHz, 640 pixels per line, center spread of ±1%. Find the necessary spread spectrum register settings.

 $F_{MID} = F_{OUT}$

NC = 640 or 320 or 160 (integer number of spread periods/screen)

MOD = (25MHz * 640)/(2 * 27MHz) = 296

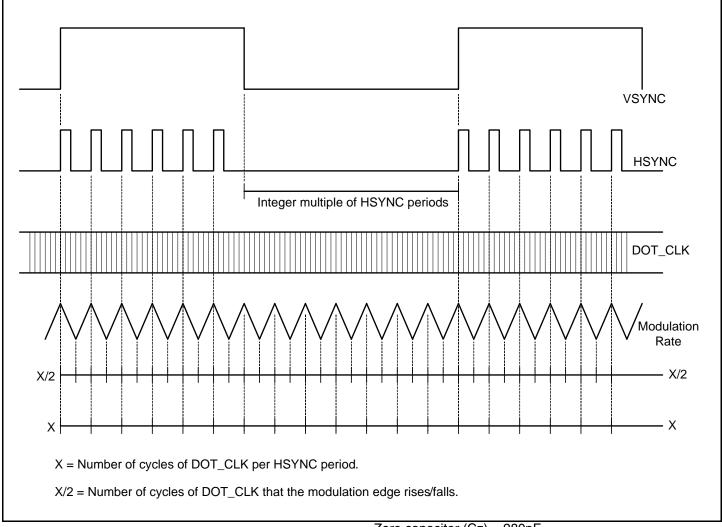
NSS = (640/2)+(640/8)*(27.27MHz-26.73MHz)/27MHz = 322.

 $F_{MOD} = 27MHz/640 = 42.2kHz.$

Non-Video Example

 F_{REF} = 25MHz, F_{OUT} = 27 MHz, 32kHz modulation rate, center spread of ±1%. Find the necessary spread spectrum register settings.

 $F_{MID} = F_{OUT}$


 $F_{MOD} = 32$ kHz = 27MHz/NC.

NC = 844

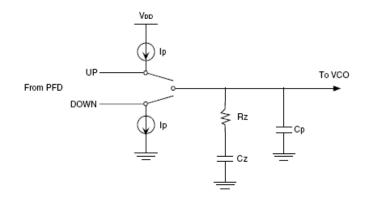
MOD = (25MHz * 844)/(2 * 27MHz) = 391

NSS = (844/2)+(844/8)*(27.27MHz-26.73MHz)/27MHz = 424.

VSYNC, HSYNC, DOT_CLK – Modulation Rate Relationship

LOOP FILTER

The loop filter for each PLL can be programmed to optimize the jitter performance. The low-pass frequency response of the PLL is the mechanism that dictates the jitter transfer characteristics. The loop bandwidth can be extracted from the jitter transfer. A narrow loop bandwidth is good for jitter attenuation while a wide loop bandwidth is best for low jitter generation. The specific loop filter components that can be programmed are the resistor via the RZ[4:0] bits, zero capacitor via the CZ[2:0] bits, pole capacitor via the CP[1:0] bits, and the charge pump current via the IP#[2:0] bits.


The following equations govern how the loop filter is set:

Zero capacitor (Cz) = 280pF

Pole capacitor (Cp) = 30pF

Charge pump (Ip) = IP#[2:0] uA

VCO gain (Kvco) = 350MHz/V * 2π

PLL Loop Bandwidth:

Charge pump gain $(K\phi)$ = Ip / 2π

VCO gain (Kvco) = 350MHz/V * 2π

M = Total multiplier value (See the PRE-SCALERS, FEEDBACK-DIVIDERS, POST-DIVIDERS section for more detail)

$$\omega c = (Rz * K\phi * Kvco * Cz)/(M * (Cz + Cp))$$

 $Fc = \omega c / 2\pi$

Note, the phase/frequency detector frequency (FPFD) is typically seven times the PLL closed-loop bandwidth (Fc) but too high of a ratio will reduce your phase margin thus compromising loop stability.

To determine if the loop is stable, the phase margin (ϕ m) would need to be calculated as follows.

Phase Margin:

 $\omega z = 1 / (Rz * Cz)$

 $\omega p = (Cz + Cp)/(Rz * Cz * Cp)$

 $\phi m = (360 / 2\pi) * [tan^{-1}(\omega c / \omega z) - tan^{-1}(\omega c / \omega p)]$

To ensure stability in the loop, the phase margin is recommended to be > 60° but too high will result in the lock time being excessively long. Certain loop filter parameters would need to be compromised to not only meet a required loop bandwidth but to also maintain loop stability.

Damping Factor:

ζ= Rz/2 *(Kvco * Ip * Cz)^{1/2}/M

Example

Fc = 150KHz is the desired loop bandwidth. The total A*M value is 160. The ζ (damping factor) target should be 0.7, meaning the loop is critically damped. Given Fc and A*M, an optimal loop filter setting needs to be solved for that will meet both the PLL loop bandwidth and maintain loop stability.

Choose a mid-range charge pump from register table

lcp= 11.9uA.

 $\omega c = 2\pi * Fc = 9.42x10^{5} s^{-1}$

 $\omega p = (Cz + Cp)/(Rz * Cz * Cp) = \omega z (1 + Cz / Cp)$

Solving for Rz, the best possible value Rz=30kOhms (RZ[1:0]=10) gives

 ζ = 1.4 (Ideal range for ζ is 0.7 to 1.4)

Solving back for the PLL loop bandwidth, Fc=149kHz.

The phase margin must be checked for loop stability.

$$\begin{split} \phi m &= (360 \ / \ 2\pi) \ ^* \ [tan_{^-1} \ (9.42 x 10^5 \ s^{^-1} \ / \ 1.19 x 10^5 \ s^{^-1}) \\ &- \ tan^{^-1} (9.42 x 10^5 \ s^{^-1} \ / \ 1.23 x 10^6 \ s^{^-1})] = 45^\circ \end{split}$$

The phase margin would be acceptable with a fairly stable loop.

© 2019 Renesas Electronics Corporation

SEL[1:0] Function

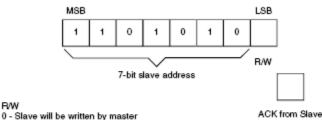
The IDT5P49EE602 can support up to three unique configurations. Users may pre-program all configurations, selected using SEL[1:0] pins. Alternatively, users may use I2C interface to configure these registers on- the-fly.

Always power with SEL1=1 and/or SEL0=1.

SEL1	SEL0	Configuration Selections
0	0	Power Down/Sleep Mode
0	1	Select CONFIG0
1	0	Select CONFIG1
1	1	Select CONFIG2

Configuration OUTx IO Standard

Users can configure the individual output IO standard from


Programming the Device

I²C may be used to program the IDT5P49EE602.

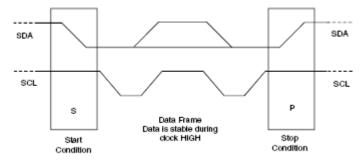
- Device (slave) address = 7'b1101010

I²C Programming

The IDT5P49EE602 is programmed through an I²C-Bus serial interface, and is an I²C slave device. The read and write transfer formats are supported. The first byte of data after a write frame to the correct slave address is interpreted as the register address; this address auto-increments after each byte written or read.

1 - Slave will be read by master

R/W


The first byte transmitted by the Master is the Slave Address followed by the R/W bit. The Slave acknowledges by sending a *1* bit.

First Byte Transmitted on I²C Bus

Power Down/Sleep Mode is selected by the No_PD bit. No_PD=0 enables Power Down mode with no outputs. No_PD=1 enables sleep mode with 32kHz output on OUT2.

a single 3.3V power supply. Each output can support 1.8V/ 2.5V or 3.3V LVCMOS. VDDO1 must have the highest voltage of any pin on the device. VDDO2 and VDDO3 may have any value between 1.8V and VDDO1.

The frame formats are shown in the following illustration.

Framing

External I²C Interface Condition

KEY:

From Master to Slave

From Master to Slave, but can be omitted if followed by the correct sequence

Normally data transfer is terminated by a STOP condition generated by the Master. However, if the Master still wishes to communicate on the bus, it can generate a repeated START condition, and address another Slave address without first generating a STOP condition.

From Slave to Master

SYMBOLS:

ACK - Acknowledge (SDA LOW) NACK - Not Acknowledge (SDA HIGH) Sr - Repeated Start Condition S - START Condition

P-STOP Condition

EEPROM Interface

The IDT5P49EE602 can store its configuration in an internal EEPROM. The contents of the device's internal programming registers can be saved to the EEPROM by issuing a save instruction (ProgSave) and can be loaded back to the internal programming registers by issuing a restore instruction (ProgRestore).

To initiate a save or restore using I^2C , only two bytes are transferred. The Device Address is issued with the read/write bit set to "0", followed by the appropriate command code. The save or restore instruction executes

after the STOP condition is issued by the Master, during which time the IDT5P49EE602 will not generate Acknowledge bits. The IDT5P49EE602 will acknowledge the instructions after it has completed execution of them. During that time, the I^2C bus should be interpreted as busy by all other users of the bus.

On power-up of the IDT5P49EE602, an automatic restore is performed to load the EEPROM contents into the internal programming registers. The IDT5P49EE602 will be ready to accept a programming instruction once it acknowledges its 7-bit I²C address.

Progwrite

s	Address	R/W	ACK	Command Code	ACK	Register	ACK	Data	ACK	Р
	7-bits	0	1-bit	8-bits: xxxxxx00	1-bit	8-bits	1-bit	8-bits	1-bit	

Progwrite Command Frame

Writes can continue as long as a Stop condition is not sent and each byte will increment the register address.

Progread

Note: If the expected read command is not from the next higher register to the previous read or write command, then set a known "read" register address prior to a read operation by issuing the following command:

s	Address	R/W	ACK	Command Code	ACK	Register	ACK	[]\$]
	7-bits	0	1-bit	8-bits: xxxxxx00	1-bit	8-bits	1-bit	

Prior to Progread Command Set Register Address

The user can ignore the STOP condition above and use a repeated START condition instead, straight after the slave acknowledgement bit (i.e., followed by the Progread command):

S	Address	R/W	ACK	ID Byte	ACK	Data_1	ACK	Data_2	ACK	Data_last	NACK	Ρ
	7-bits	1	1-bit	8-bits	1-bit	8-bits	1-bit	8-bits	1-bit	8-bits	1-bit	

Progread Command Frame

Progsave

s	Address	R/W	ACK	Command Code	ACK	Р
	7-bits	0	1-bit	8-bits:xxxxxx01	1-bit	

Note:

PROGWRITE is for writing to the IDT5P49EE602 registers. PROGREAD is for reading the IDT5P49EE602 registers. PROGSAVE is for saving all the contents of the IDT5P49EE602 registers to the EEPROM. PROGRESTORE is for loading the entire EEPROM contents to the IDT5P49EE602 registers.

Progrestore

s	Address	R/W	ACK	Command Code	ACK	Р
	7-bits	0	1-bit	8-bits:xxxxxx10	1-bit	

During PROGRESTORE, outputs will be turned off to ensure that no improper voltage levels are experienced before initialization.

I²C Bus DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	Input HIGH Level		0.7xVDDO1		5.5	V
V _{IL}	Input LOW Level				0.3xVDDO1	V
V _{HYS}	Hysteresis of Inputs		0.05xVDDO1			V
I _{IN}	Input Leakage Current	$V_{DD} = 0V$			±1.0	μA
V _{OL}	Output LOW Voltage	I _{OL} = 3 mA			0.4	V

I²C Bus AC Characteristics for Standard Mode¹

Symbol	Parameter	Min	Тур	Max	Unit
F _{SCLK}	Serial Clock Frequency (SCL)	0		100	kHz
t _{BUF}	Bus free time between STOP and START	4.7			μs
t _{SU:START}	Setup Time, START	4.7			μs
t _{HD:START}	Hold Time, START	4			μs
t _{SU:DATA}	Setup Time, data input (SDA)	250			ns
t _{HD:DATA}	Hold Time, data input (SDA) ²	0			μs
t _{OVD}	Output data valid from clock			3.45	μs
CB	Capacitive Load for Each Bus Line			400	pF
t _R	Rise Time, data and clock (SDA, SCLK)			1000	ns
t _F	Fall Time, data and clock (SDA, SCLK)			300	ns
t _{HIGH}	HIGH Time, clock (SCLK)	4			μs
t _{LOW}	LOW Time, clock (SCLK)	4.7			μs
t _{SU:STOP}	Setup Time, STOP	4			μs

1) No activity is allowed on I^2C lines until VDD>1.62V.

2) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IH}MIN of the SCL signal) to bridge the undefined region of the falling edge of SCL.

I²C Bus AC Characteristics for Fast Mode¹

Symbol	Parameter	Min	Тур	Max	Unit
F _{SCLK}	Serial Clock Frequency (SCL)	0		400	kHz
t _{BUF}	Bus free time between STOP and START	1.3			μs
t _{SU:START}	Setup Time, START	0.6			μs
t _{HD:START}	Hold Time, START	0.6			μs
t _{SU:DATA}	Setup Time, data input (SDA)	100			ns
t _{HD:DATA}	Hold Time, data input (SDA) ²	0			μs
t _{OVD}	Output data valid from clock			0.9	μs
CB	Capacitive Load for Each Bus Line			400	pF
t _R	Rise Time, data and clock (SDA, SCL)	20 + 0.1xC _B		300	ns
t _F	Fall Time, data and clock (SDA, SCL)	20 + 0.1xC _B		300	ns
t _{HIGH}	HIGH Time, clock (SCL)	0.6			μs
t _{LOW}	LOW Time, clock (SCL)	1.3			μs
t _{SU:STOP}	Setup Time, STOP	0.6			μs

1) No activity is allowed on I^2C lines until VDD>1.62V.

2) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IH}MIN of the SCL signal) to bridge the undefined region of the falling edge of SCL.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT5P49EE602. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Symbol	Description	Мах	Unit
V _{DD}	Internal Power Supply Voltage	-0.5 to +4.6	V
VI	Input Voltage	-0.5 to +4.6	V
Vo	Output Voltage (not to exceed 4.6 V)	-0.5 to V _{DD} +0.5	V
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Recommended Operation Conditions

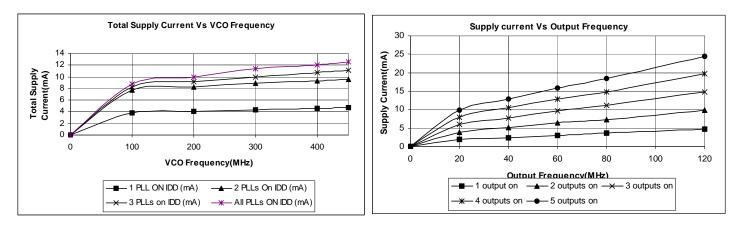
Symbol	Parameter	Min	Тур	Max	Unit
V_{DD} , $V_{DD}x$	Power supply voltage for core VDD	1.71	1.8	1.89	V
V _{DDOX}	Power supply voltage for outputs VDDO1/2/3	1.71	1.8	1.89	V
		2.375	2.5	2.625	V
		3.135	3.3	3.465	V
T _A	Operating temperature, ambient	-40		+85	°C
C _{LOAD_OUT}	Maximum load capacitance (3.3V LVTTL only)			15	pF
C _{LOAD_OUT}	Maximum load capacitance (1.8V or 2.5V LVTTL only)			8	pF
F _{IN}	External reference crystal	8		30	MHz
	External reference clock CLKIN	1		40	-
t _{PU}	Power up time for all V_{DD} s to reach minimum specified voltage (power ramps must be monotonic)	0.05		5	ms

Capacitance (T_A = +25 °C, f = 1 MHz, V_{IN} = 0V)

Symbol	Parameter	Min	Тур	Max	Unit
C _{IN}	Input Capacitance		3		pF
Crystal Specifi	cations				1
XTAL_FREQ	Crystal frequency	8		30	MHz
XTAL_MIN	Minimum crystal load capacitance		7		pF
XTAL_MAX	Maximum crystal load capacitance		20		pF

DC Electrical Characteristics for 3.3 Volt LVTTL¹

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = 33mA	2.4		VDDO	V
V _{OL}	Output LOW Voltage	I _{OH} = 33mA			0.4	V
I _{OZDD}	Output Leakage Current	3-state outputs			5	μA


DC Electrical Characteristics for 2.5Volt LVTTL¹

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = 25mA	2.1		VDDO	V
V _{OL}	Output LOW Voltage	I _{OH} = 25mA			0.4	V
I _{OZDD}	Output Leakage Current	3-state outputs			5	μA

DC Electrical Characteristics for 1.8Volt LVTTL¹

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage	VDD = 1.71V to 1.89V	0.65*VDDO		VDDO	V
V _{OL}	Output LOW Voltage				0.35*VDDO	V
V _{IH}	Input HIGH Voltage	SEL[1:0], 3.3V tolerant	0.75VDD			V
V _{IL}	Input LOW Voltage	SEL[1:0], 3.3V tolerant			0.25VDD	V
I _{OZDD}	Output Leakage Current	3-state outputs			5	μA

Power Supply Characteristics for LVTTL Outputs

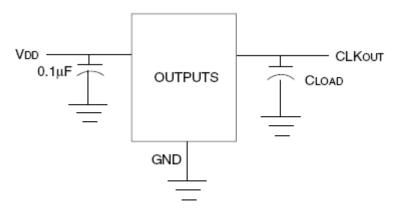
1: See "Recommended Operating Conditions" table. Alway completely power up VDD and VDDx prior to applying VDDO power.

AC Timing Electrical Characteristics

(Spread Spectrum Generation = OFF)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input Frequency	1 ¹		40	MHz	
1 / t1	Output Frequency	Single Ended Clock output limit (LVTTL) 3.3V	0.001		120	MHz
		Single Ended Clock output limit (LVTTL) 2.5V	_		110	MHz
		Single Ended Clock output limit (LVTTL) 1.8V	_		100	MHz
f _{VCO}	VCO Frequency	VCO operating Frequency Range	100		475	MHz
f _{PFD}	PFD Frequency	PFD operating Frequency Range	0.300 ¹		20	MHz
t2	Input Duty Cycle	Duty Cycle for Input	40		60	%
t3	Output Duty Cycle	Measured at VDD/2	45		55	%
t4	Slew Rate, SLEWx(bits) = 00	Single-Ended 3.3V LVCMOS Output clock rise and fall time, 20% to 80% of VDD (Output Load = 7 pF)		5.1		V/ns
	Slew Rate, SLEWx(bits) = 01	Single-Ended 3.3V LVCMOS Output clock rise and fall time, 20% to 80% of VDD (Output Load = 7 pF)		4.4		-
	Slew Rate, SLEWx(bits) = 10	Single-Ended 3.3V LVCMOS Output clock rise and fall time, 20% to 80% of VDD (Output Load = 7 pF)		2.8		
	Slew Rate, SLEWx(bits) = 11	Single-Ended 3.3V LVCMOS Output clock rise and fall time, 20% to 80% of VDD (Output Load = 7 pF)		1.8		
t5	Clock Jitter	Peak-to-peak period jitter, CLK outputs measured at VDD/2; f _{PFD} >= 10 MHz Single output frequency only.			100	ps
		Peak-to-peak period jitter, CLK outputs measured at VDD/2; f _{PFD} >= 10 MHz Multiple output frequencies switching.			200	ps
t6	Output Skew	Skew between output to output on the same bank			75	ps
		Skew between any output (Same freq and IO type, FOUT >10MHz)			200	ps
t7	Lock Time	PLL Lock Time from Power-up (using MHz reference clock) ²		5	20	ms
		PLL Lock Time from Power-up using 32.768kHz reference clock)		1	3	S
		PLL Lock time from shutdown mode		5	10	ms

Input clock (square wave) may be used at 1 MHz.
 Time from supply voltage crosses VDD=1.62V to PLLs are locked.

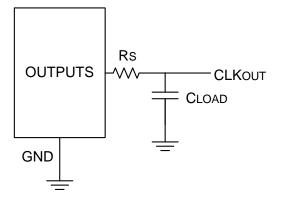

© 2019 Renesas Electronics Corporation

Spread Spectrum Generation Specifications

Symbol	Parameter	Description	Min	Тур	Мах	Unit
f _{IN}	Input Frequency	Input Frequency Limit	1 ¹		40	MHz
f _{MOD}	Mod Frequency	Modulation Frequency	32		120	kHz
f _{SPREAD}	Spread Value	Amount of Spread Value (programmable) - Down Spread	Programmable			%f _{OUT}
		Amount of Spread Value (programmable) - Center Spread	Pro	gramm	able	
		Total Spread Value	0.5		4.0	

Note 1: Practical lower frequency is determined by loop filter settings.

Test Circuits and Conditions¹



NOTE:

1. All Vco pins must be tied together.

Test Circuits for DC Outputs

Other Termination Scheme (Block Diagram)

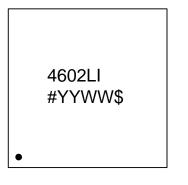
LVTTL: ~7pF for each output

Programming Registers Table

	Default									
Addr	Register Hex Value	7	6	5	4	3	2	1	0	Description
0x00	00	ONXTALB	CSX2	2[1:0]	csx1	1[1:0]	XTAL32ONB	Re	sserved	ONXTALB - MHz Crystal active low CSX2 [1:0]- internal 32kHz crystal cap2 00 - 18pF; 10 - 30pF 01 - 24pF; 11 - 36pF CSX1 [1:0] - Internal 32kHz crystal cap1 00 - 0pF; 10 - 6pF 01 - 3pF; 11 - 9pF XTAL32ONB - 32k crystal active low
0x01	00	INV[0]	SLEW	0[1:0]	No_PD		S0[2:1]	Re	eserved	No_PD - Enables/Disables 32kHz
0x02	00					served				clock output on Config 00. No_PD=0 - 32kHz is off.
0x03	00	<u>r</u>				served				No_PD=1 - 32kHz remains active.
0x04	00	INV[1]	SLEW	/1[1:0]	Reserved		S1[2:1]	Re	eserved	INV[#] - Invert output# SLEW#[0:1] - output# slew setting
0x05	00					served				_0 0 - 5.1V/ns
0x06	00					served				0 1 - 4.4V/ns
0x07	00	INV[2]	SLEW		Reserved		PS22:1]		eserved	1 0 - 2.8V/ns 1 1 - 1.8V/ns
0x08	00	INV[3]	SLEW		Reserved	P	S3[2:1]		eserved	PS#[2:1] -Power Select
0x09		INV[4B]	INV[4A]	SLE	W4[0:1]		nes	served		00 - Reserved 01 - CLK# connects to VDDO1 10 - CLK# connects to VDDO2 11 - CLK# connects to VDDO31
0x0A	00					served				
0x0B	00					served				
0x0C 0x0D	00					served				
0x0D 0x0E	00					FA[7:0]				Configuration0 REFA[7:0] - Reference Divide PLLA
0x0F	00				FBA	(10:3)				FBA[10:0] - Feedback Divide PLLA
0x10	00			Reserved				FBA[2:0)		
0x11	00	Reserved	XDIVA	Rž	ZA[1:0]		IPA[2:0]		REFSELA	XDIVA - FB predivide PLLA; 0 - /1; 1 - /4 RZA[1:0] - Zero Resistor PLLA 00 - 5kOhm 01 - 10kOhm 10 - 30kOhm 11 - 80kOhm IPA[2:0] - charge Pump Current PLLA 100 - 6.3uA 101 - 11.9 uA 110 - 17.7 uA 111 - 22.7uA REFSELA - Clock input PLLA 0 - MHz input 1 - 32kHz input
0x12	00					B[7:0]				REFB[7:0] - Reference Divide PLLB
0x13	00				FBE	3[10:3]				FBB[10:0] - Feedback Divide PLLB
0x14	00			MOD[4:0]				FBB[2:0]		PLLB Spread Parameters MOD[12:0] NC[10:0]
0x15	00					D[12:5]				NC[10:0] NSS[12:0]
0x16	00				NC	[10:3]	T			
0x17	00			NSS[4:0]				NC[2:0]		
0x18	00				NSS	6[12:5]				

18

IDT5P49EE602 VERSACLOCK[®] LOW POWER CLOCK GENERATOR


Add T Hex 7 6 5 4 3 2 1 0 Description bx19 20 Reserved IPS(2) R22(10)		Default									
On IA OO Reserved PEFSELB SSENB B OO OOChm 1 11 (B00Cm OO OOChm 1 11 (B00Cm OO	Addr		7	6	5	4	3	2	1	0	Description
MAR Go Personal Personal General General On Holding 04.11 Go	0x19	20		Reserved			IPB[2:0]		RZ	[1:0]	RZB[1:0] - Zero Resistor PLLB
DxtC 00 Reserved FBC[10:3] FBC[2:0] FBC[10:9] FBC[2:0] FBC[2:0] FBC2<- Feedback Predivide PLLC Tum on using XDIVC=1 0xtE 00 IPC[2:0] RESC[1:0] RESC[1:0] FBC2 Teedback Predivide PLLC Tum on using XDIVC=1 Tum on using	0x1A	00			Rese				REFSELB	SSENB_B	01 - 10kOhm 10 - 30kOhm 11 - 80kOhm IPB[2:0] - charge Pump Current PLLB 000 - 0.37uA, 100 - 6.3uA 001 - 1.1uA, 101 - 11.9uA 010 - 1.8 uA, 110 - 17.7uA 011 - 3.4uA, 111 - 22.7uA REFSELB - Clock input PLLB 0 - MHz input 1 - 32kHz input
Ox1D 00 Reserved FBC[2:0] FBC[2:0] 0x1E 00											
Dx1E 00 FBC2[7:0] FBC2[7:0] FBC2[1:0] FBC2[1:0] FBC2[1:0] FBC2[1:0] FBC2[1:0] REFSELC FBC2[1:0] Current PLI 100: 6:3:A 0x20 00 REFD[7:0] REFD[7:0] REFSELC 0.4Mz; input 11: 30A 11: 3: 4A 11: 3: 22: 74 REFSELC 0.4Mz; input REFSELC 0.4Mz; input 11: 3: 4A 11: 3: 4A 11: 3: 22: 74 REFSELC 0.4Mz; input REFSELC 0.4Mz; input 11: 3: 4A 11: 3: 4A 11: 3: 22: 74 REFSELC 0.4Mz; input REFSELC 0.4Mz; input 11: 3: 4A						FB	C[10:3]				FBC[10:0] - Feedback Divide PLLC
Date IPC(2:0) RZC(1:0) Reserved XDIVC REFSELC					Reserved				FBC[2:0]		
0.26. Sk0hm 0.0 - Sk0hm 0.0 - Sk0hm 10.30k0hm 1.30k0hm 1.30k0hm 11.30k0hm 1.00k0hm 1.00k0hm 11.22.7uA 101 - 119 uA 101 - 119 uA 11.22.7uA 111 - 22.7uA 111 - 22.7uA 11.22.7uA REFD[7:0] REFD[7:0] 0x20 00	0x1E	00				FB	C2[7:0]				Turn on using XDIVC=1
0x21 00 FBD[10:3] FBD[10:0] - Feedback Divide PLLD; 0x22 00 Reserved FBD[2:0] XDIVD - FB predivide PLLD; 0x23 00 XDIVD RZD[1:0] IPD[2:0] REFSELD[1:0] XDIVD - FB predivide PLLD; 0.423 00 XDIVD RZD[1:0] IPD[2:0] REFSELD[1:0] C/1; 1 - /4 RZD[1:0]				IPC[2:0]				Reserved	XDIVC	REFSELC	00 - 5kOhm 01 - 10kOhm 10 - 30kOhm 11 - 80kOhm IPC[2:0] - charge Pump Current PLLC 100 - 6.3uA 101 -11.9 uA 110 - 17.7 uA 111 - 22.7uA REFSELC 0 - MHz input 1 - 32kHz input
0x22 00 Reserved FBD[2:0] 0x23 00 XDIVD RZD[1:0] IPD[2:0] REFSELD[1:0] XDIVD - FB predivide PLLD; 0 - /1; 1 - /4 RZD[1:0] - Zero Resistor PLLD 00 - 5KOhm 01 - 10KOhm 10 - 30KOhm 11 - 80KOhm 11 - 80KOhm 11 - 80KOhm 11 - 80KOhm 11 - 80KOhm 11 - 17.7 uA 110 - 17.7 uA 111 - 22.7 uA REFSELD[1:0] 00 - MHz input 11 - 32KHz input 00 - MHZ input 11 - 32KHZ in	0x20	00				REI	FD[7:0]				REFD[7:0] - Reference Divide PLLD
0x23 00 XDIVD RZD[1:0] IPD[2:0] REFSELD[1:0] XDIVD - FB predivide PLLD; 0 - /1; 1 - /4 0x23 00 XDIVD RZD[1:0] IPD[2:0] REFSELD[1:0] XDIVD - FB predivide PLLD; 0 - /1; 1 - /4 0x23 00 SkOhm 01 - 10kOhm 01 - 2kro Resistor PLLD 00 - 5kOhm 00 - 5kOhm 01 - 10kOhm 10 - 30A 10 - 30A 11 - 80kOhm 11 - 80kOhm 10 - 11; 9 UA 110 - 17,7 UA 111 - 22,7 UA REFSELD[1:0] 00 - MHz input 01 - 11; 9 UA 110 - 27,7 UA REFSELD[1:0] 00 - MHz input 11 - 32kHz input 0x24 00 OD0[7:0] OD#[7:0] OD#[7:0] - Output Divide# 0x25 00 Reserved OD#[7:0] Output Divide# 0x26 00 Reserved OD#[7:0] OL 0x28 00 Reserved OD#[7:0] OL 0x28 00 OD#[7:0] OL OD#[7:0] 0x28 00 OD#[7:0] OL OD#[7:0] 0x28 00					Reserved	FBI	D[10:3]		FBD[2:0]		FBD[10:0] - Feedback Divide PLLD
0x25 00 0x26 00 Reserved 0x27 00 OD1[7:0] 0x28 00 Reserved 0x29 00 Reserved 0x2A 00 OD2[7:0] 0x2B 00 OD3[7:0]	0x23	00	XDIVD	RZD	[1:0]				REFS	SELD[1:0]	0 - /1; 1 - /4 RZD[1:0] - Zero Resistor PLLD 00 - 5kOhm 10 - 10kOhm 10 - 30kOhm 11 - 80kOhm IPD[2:0] - charge Pump Current PLLD 100 - 6.3uA 101 - 11.9 uA 110 - 17.7 uA 111 - 22.7uA REFSELD[1:0] 00 - MHz input 11 - 32kHz input
0x26 00 Reserved 0x27 00 OD1[7:0] 0x28 00 Reserved 0x29 00 Reserved 0x2A 00 OD2[7:0] 0x2B 00 OD3[7:0]						OE	00[7:0]				OD#[7:0] - Output Divide#
0x27 00 OD1[7:0] 0x28 00 Reserved 0x29 00 Reserved 0x2A 00 OD2[7:0] 0x2B 00 OD3[7:0]											
0x28 00 Reserved 0x29 00 Reserved 0x2A 00 OD2[7:0] 0x2B 00 OD3[7:0]											_
0x29 00 Reserved 0x2A 00 OD2[7:0] 0x2B 00 OD3[7:0]											
0x2A 00 OD2[7:0] 0x2B 00 OD3[7:0]											_
0x2B 00 OD3[7:0]											4
											4
	0x26 0x2C	00									-

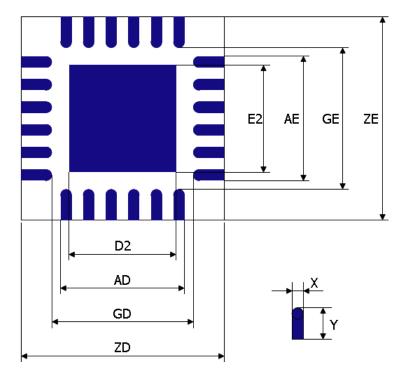
IDT5P49EE602 VERSACLOCK[®] LOW POWER CLOCK GENERATOR

	Default				E	Bit #				
Addr	Register Hex Value	7	6	5	4	3	2	1	0	Description
0x2D	00	SCR	4[1:0]	SCR	3[1:0]	SCR	2[1:0]	Re	served	SRC4[1:0] - OD4 source 00 - off; 10 - PLLC 01 - PLLA; 11 - MHz Reference SRC3[1:0] - OD3 source 00 - off; 10 - PLLA 01 - PLLC; 11 - PLLB SRC2[1:0] - OD2 source 00 - off; 10 - MHz Reference 01 - PLLC; 11 - 32kHz Reference
0x2E	00	Rese	erved	SCR	1[1:0]	Res	erved	Re	served	SRC1[1:0] - OD1 source 00 - off; 10 - PLLB 01 - 32kHz Reference; 11 - PLLD
0x2F 0x30	01 FF	SCR	0[1:0]		Re	Reserved	eserved			SRC0[1:0] - OD0 source 00 - off; 10 - PLLC 01 - PLLB; 11 - PLLD
0x31	00	PDB[4]	Reserved	OE[4B]	OE[4A]		Re	served		PDB[#] - Powerdown OUT#. PDB#=0,
0x32	00	OE[3]	OE[2]	Reserved	Reserved	OE[1]	Reserved	Reserved	OE[0]	OUT# driven low
0x33	00	PDB[3]	PDB[2]	Reserved	Reserved	PDB[1]	Reserved	Reserved	PDB[0]	OE[#] - Output enable OUT#. OE#=0, OUT# tri-stated. If PDB#=OE#=0, OUT# driven low
0x34	00		•			FA[7:0]				Configuration1
0x35	00				FB	A[10:3)				(See definitions from Configuration0 above)
0x36	00		1	Reserved				FBA[2:0)		,
0x37	00	Reserved	XDIVA	RZA	A[1:0]		IPA[2:0]		REFSELA	_
0x38	00					FB[7:0]				_
0x39	00				FB	B[10:3]		555/2 41		_
0x3A	00			MOD[4:0]				FBB[2:0]		_
0x3B	00					D[12:5]				_
0x3C 0x3D	00			NCC[4:0]	NC	C[10:3]		NC[2:0]		_
0x3D 0x3E	00			NSS[4:0]	NS	S[12:5]		NC[2:0]		_
0x3E	40		Reserved		113	IPB[2:0]		BZ	B[1:0]	-
0x40	00		ricscrived	Res	erved	11 D[2.0]		REFSELB	SSENB_B	_
0x41	00			1100		FC[7:0]		TIEL OLLD	COLIND_D	_
0x42	00					C[10:3]				_
0x43	00			Reserved				FBC[2:0]		-
0x44	00				FB	C2[7:0]				-
0x45	00		IPC[2:0]			C[1:0]	Reserved	XDIV	REFSELC	-
0x46	00					FD[7:0]				-
0x47	00				FB	D[10:3]				_
0x48	00			Reserved				FBD[2:0]		
0x49	00	XDIVD	RZC	[1:0]		IPD[2:0]		REFS	ELD[1:0]	
0x4A	00				O	00[7:0]				
0x4B	00					served				
0x4C	00					served				4
0x4D	00					D1[7:0]				
0x4E	00					served				4
0x4F	00					served				
0x50 0x51	00					D2[7:0] D3[7:0]				-
0x51	00					D47:0]				-
0x53	00	SCR	4[1:0]	SCR	3[1:0]	-	R21:0]	Re	served	
0x54	00		erved		1[1:0]		erved		served	-
0x55	01		0[1:0]				eserved	1		1
0x56	FF			1	Re	served				1
0x57	00	PDB[4]	Reserved	OE[4B]	OE[4A]		Re	served		1
0x58	00	OE[3]	OE[2]	Reserved	Reserved	OE[1]	Reserved	Reserved	OE[0]	
0x59	00	PDB[3]	PDB[2]	Reserved	Reserved	PDB[1]	Reserved	Reserved	PDB[0]	

	Default									
Addr	Register Hex Value	7	6	5	4	3	2	1	0	Description
0x5A	00					FA[7:0]				Configuration2
0x5B	00				FB	A[10:3)				(See definitions from Configuration0 above)
0x5C	00			Reserved				FBA[2:0)		(10000)
0x5D	00	Reserved	XDIVA	RZA	[1:0]		IPA[2:0]		REFSELA	
0x5E	00					FB[7:0]				
0x5F	00				FB	B[10:3]				
0x60	00			MOD[4:0]				FBB[2:0]		
0x61	00					D[12:5]				
0x62	00				N	C[10:3]				
0x63	00			NSS[4:0]				NC[2:0]		
0x64	00				NS	S[12:5]				
0x65	40		Reserved			IPB[2:0]		RZ	B[1:0]	
0x66	00			Res	erved			REFSELB	SSENB_B	
0x67	00				RE	FC[7:0]				
0x68	00				FB	C[10:3]				
0x69	00			Reserved				FBC[2:0]		-
0x6A	00				FB	C2[7:0]				
0x6B	00		IPC[2:0]		RZC	C[1:0]	Reserved	XDIV	REFSELC	
0x6C	00				RE	FD[7:0]				
0x6D	00				FB	D[10:3]				
0x6E	00			Reserved				FBD[2:0]		
0x6F	00	XDIVD	RZE	0[1:0]		IPD[2:0]		REFS	ELD[1:0]	
0x70	00		1		O	D0[7:0]		1		-
0x71	00				Re	served				
0x72	00				Re	served				
0x73	00				O	D1[7:0]				-
0x74	00				Re	served				
0x75	00				Re	served				
0x76	00				O	D2[7:0]				1
0x77	00				O	D3[7:0]				1
0x78	00				O	D4[7:0]				1
0x79	00	SCR	4[1:0]	SCR	3[1:0]	SCR	2[1:0]	Res	served	1
0x7A	00	Rese	erved	SCR	1[1:0]	Rese	erved	Res	served	1
0x7B	01	SCR	0[1:0]			Re	served	1		1
0x7C	FF			1	Re	served				1
0x7D	00	PDB[4]	Reserved	OE[4B]	OE[4A]		Re	served		1
0x7E	00	OE[3]	OE[2]	Reserved	Reserved	OE[1]	Reserved	Reserved	OE[0]	1
0x7F	00	PDB[3]	PDB[2]	Reserved	Reserved	PDB[1]	Reserved	Reserved	PDB[0]	1

Marking Diagram (NL24)

Notes:

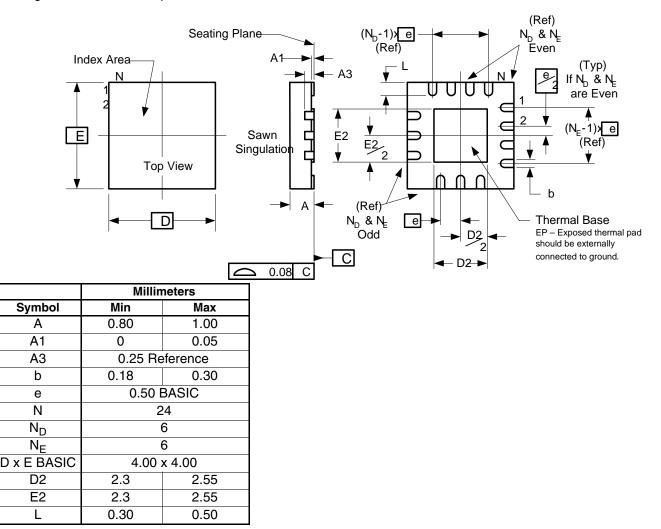

1. "#" is the lot number.

- 2. YYWW is the last two digits of the year and week that the part was assembled.
- 3. "\$" is the assembly mark code.
- 4. "I" indicates industrial temperature range.

Thermal Characteristics for 24QFN

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		50.1		°C/W
Ambient	θ_{JA}	1 m/s air flow		43.1		°C/W
	θ_{JA}	2.5 m/s air flow		39.4		°C/W
Thermal Resistance Junction to Case	θ_{JC}			61.7		°C/W

Landing Pattern


Dimensions	
X(max)	0.28
Yref	0.69
A(max)	2.78
G(min)	2.93
Z(max)	4.31
E2/D2(max)	2.63

Unit : mm

© 2019 Renesas Electronics Corporation

Package Outline and Package Dimensions (24-pin 4mm x 4mm QFN)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
5P49EE602NLGI	See page 22	Tubes	24pin VFQFPN	-40 to +85° C
5P49EE602NLGI8	See page 22	Tape and Reel	24pin VFQFPN	-40 to +85° C

"G" after the two-letter package code are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Date	Description of Change	
	R.Willner	10/16/09	Preliminary Datasheet release.	
А	R.Willner	11/20/09	No_PD bit inclusion - 32kHz clock on/off in Config 00.	
В	R.Willner	3/26/10	Typographical changes. Correct spread spectrum calculations.	
С	R.Willner	6/11/10	Typographical changes. Default conditions.	
D	R.Willner	9/08/10	Updated thermal pad and dimensions on package drawing. Input Clock max voltage swing 1.8V. Power ramp sequence.	
Е	R. Willner	10/29/10	Typographical changes. Loop filter calculations. Default register bit corrections.	
F	R. Willner	01/19/11	Corrected notes for top-side marking.	
G	R. Willner	04/13/11	 Updated SCLK and SDA pin descriptions Updated DC Electrical Char table for 1.8V LVTTL; added VIH and VIL. Updated "Lock Time/PLL Lock Time from shutdown mode" Typ. and Max. specs in AC Timing Electrical Char table. 	
Н	R. Willner	05/04/11	Added Landing Pattern diagram.	
J	A.T.	09/29/11	Updated Power-up/Power-down Sequence notes.	
К	R. Willner	10/13/11	Added VDDO power sequencing time and VDDO limits.	
L	R. Willner	11/18/14	 Added pin 1 indicator dot on marking diagram. Corrected typo in Register Map table; SLEWx[0:1] was changed to SLEWx[1:0] 	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H5150-01MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1