3.3V EEPROM GENERATOR

IDT5V9885T

FEATURES:

- Three internal PLLs
- Internal non-volatile EEPROM
- JTAG and FAST mode ${ }^{2} \mathrm{C}$ serial interfaces
- Input Frequency Ranges: 1 MHz to 400 MHz
- Output Frequency Ranges: 4.9 kHz to 500 MHz
- Reference Crystal Input with programmable oscillator gain and programmable linear load capacitance
- Crystal Frequency Range: 8 MHz to 50 MHz
- Each PLL has an 8-bit pre-scaler and a 12-bit feedback-divider
- 10-bit post-divider blocks
- Fractional Dividers
- Two of the PLLs support Spread Spectrum Generation capability
- I/O Standards:
- Outputs - 3.3V LVTTL/LVCMOS, LVPECL, and LVDS
- Inputs - 3.3V LVTTL/ LVCMOS
- Programmable Slew Rate Control
- Programmable Loop Bandwidth Settings
- Programmable output inversion to reduce bimodal jitter
- Redundant clock inputs with glitchless auto and manual switchover options
- JTAG Boundary Scan
- Individual output enable/disable
- Power-down mode
- 3.3VVdd
- Available in TQFP and VFQFPN packages

DESCRIPTION:

The IDT5V9885T is a programmable clock generator intended for high performance data-communications, telecommunications, consumer, and networking applications. There are three internal PLLs, each individually programmable, allowing for three unique non-integer-related frequencies. The frequencies are generated from a single reference clock. The reference clock can come from one of the two redundant clock inputs. A glitchless automatic or manual switchover function allows any one of the redundant clocks to be selected during normal operation.

The IDT5V9885T can be programmed through the use of the $I^{2} \mathrm{C}$ or JTAG interfaces. The programming interface enables the device to be programmed when it is in normal operation or what is commonly known as in-system programmable. An internal EEPROM allows the user to save and restore the configuration of the device without having to reprogram it on power-up. JTAG boundary scan is also implemented.

Each of the three PLLs has an 8-bit pre-scaler and a 12-bit feedback divider. This allows the user to generate three unique non-integer-related frequencies. The PLL loop bandwidth is programmable to allow the user to tailor the PLL response to the application. For instance, the user can tune the PLL parameters to minimize jitter generation or to maximize jitter attenuation. Spread spectrum generation and fractional divides are allowed on two of the PLLs.

There are 10-bit post dividers on five of the six output banks. Two of the six output banks are configurable to be LVTTL, LVPECL, or LVDS. The other four output banks are LVTTL. The outputs are connected to the PLLs via the switch matrix. The switch matrix allows the user to route the PLL outputs to any outputbank. This feature can be used to simplify and optimize the board layout. In addition, each output's slew rate and enable/disable function can be programmed.

FUNCTIONAL BLOCK DIAGRAM

NOTE:

1. OUT4 and OUT5 pairs can be configured to be LVDS, LVPECL, or two single-ended LVTTL outputs. As LVTTL, OUT4 and OUT5 can be configured to be non-inverting.

PIN CONFIGURATION

TQFP
TOP VIEW

VFQFPN
TOP VIEW

PIN DESCRIPTION

Pin Name	$\begin{aligned} & \hline \text { PF32 } \\ & \text { Pin\# } \end{aligned}$	$\begin{aligned} & \hline \text { NL28 } \\ & \text { Pin\# } \end{aligned}$	1/0	Type	Description
CLKIN	1	1	1	LVTTL	InputClock
XTALIN/REFIN	4	4	1	LVTTL	CRYSTAL_IN-Reference crystal input or external reference clock input
XTALOUT	5	5	0	LVTTL	CRYSTAL_OUT-Reference crystal feedback
GIN0/SDAT/TDI	19	16	I	LVTTL ${ }^{(1,2)}$	Multi-purpose inputs. Canbeused for Frequency Control, SDAT ($\left.{ }^{1} \mathrm{C}\right)$, orTDI(JTAG).
GIN1/SCLK/TCK	20	17	I	LVTTL ${ }^{(1,2)}$	Multi-Purposeinputs. CanbeusedforFrequency Control, SCLK(${ }^{2} \mathrm{C}$), orTCK(JTAG).
GIN2/TMS	24	21	I	LVTTL ${ }^{(1,2)}$	Multi-Purpose inputs. Can be used for Frequency Control or TMS (JTAG)
GIN3/SUSPEND	27	23	1	LVTTL ${ }^{(1,2)}$	Multi-Purposeinputs. CanbeusedforFrequency Control orasasuspendmode control input (active HIGH).
GIN4/TRST	25	22	1	LVTTL ${ }^{(1,2)}$	Multi-Purpose inputs. Can be used for Frequency Control or TRST (JTAG)
GIN5/CLK_SEL	21	18	I	LVTTL ${ }^{(1,2)}$	Multi-Purpose inputs. Can be used for Frequency Control or input clock selector.
SHUTDOWN/OE	28	24	1	LVTTL ${ }^{(1,2)}$	Enables/disables the outputs or powers down the chip. The SP bit(0x1C) controls the polarity of the signal to be either active HIGH or LOW. (Default is active HIGH.)
$1^{2} \mathrm{C} / \overline{\mathrm{TTAG}}$	22	19	1	3 -level ${ }^{(3)}$	$1^{2} \mathrm{C}$ (HIGH) or MFC Mode (MID) or JTAG Programming (LOW)
OUT1	6	6	0	LVTTL	Configurable clock output 1. Can also be used to buffer the reference clock.
OUT2	29	25	0	LVTTL	Configurable clock output2
OUT3	8	7	0	LVTTL	Configurable clock output3
OUT4	10	8	0	Adjustable ${ }^{(4)}$	Configurable clock output4, Single-Ended or Differential when combined with OUT4
OUT4	11	9	0	Adjustable ${ }^{(4)}$	Configurable complementary clock output 4, Single-Ended or Differential when combined with OUT4
OUT5	15	13	0	Adjustable ${ }^{(4)}$	Configurable clock output5, Single-Ended or Differential when combined with OUT5
OUT5	16	14	0	Adjustable ${ }^{(4)}$	Configurable complementary clock output 5, Single-Ended or Differential when combined with OUT5
OUT6	13	11	0	LVTTL	Configurable clockoutput6
GOUTO/TDO/LOSS_LOCK	31	27	0	LVTTL ${ }^{(1)}$	Multi-Purpose Output. Canbeprogrammedtouse as PLLLOCKsignal,LOSS_LOCK or TDO in JTAG mode
GOUT1/LOSS_CLKIN	3	3	0	LVTTL	Multi-Purpose Output. Can be programmed to use as LOSS_CLKIN
VdD	$\begin{aligned} & 7,12,17 \\ & 23,26,32 \end{aligned}$	$\begin{gathered} 10,15,20 \\ 28 \end{gathered}$			3.3V Power Supply
GND	$\begin{gathered} 2,9,14, \\ 18,30 \end{gathered}$	2,12,26			Ground

NOTES:

1. The JTAG (TDO, TMS, TCLK, TRST, and TDI) and ${ }^{2} C$ (SCLK and SDAT) signals share the same pins with GIN signals.
2. Weak internal $100 \mathrm{~K} \Omega$ pull-down resistor.
3. 3-level inputs are static inputs and must be tied to Vod or GND or left floating. These inputs are internally biased to Vod/2. They are not hot-insertable or over voltage tolerant.
4. Outputs are user programmable to drive single-ended 3.3V LVTTL, differential LVDS, or differential LVPECL interface levels.

PLL FEATURES AND DESCRIPTIONS

PLLO Block Diagram

PLL1 Block Diagram

PLL2 Block Diagram

	Pre-Divider (D) Values	Multiplier (M) Values	Programmable Loop Bandwidth	Spread Spectrum GenerationCapability
PLL0	$1-255$	$2-8190$	yes	yes
PLL1	$1-255$	$2-8190$	yes	yes
PLL2	$1-255$	$1-4095$	yes	no

REFERENCE CLOCK INPUT PINS AND SELECTION

The 5V9885T supports up to two clock inputs. One of the clock inputs (XTALIN/ REFIN) can be driven by either an external crystal or a reference clock. The second clock input (CLKIN) can only be driven from an external referenceclock. Eitherclockinputcan be setasatheprimary clock. The primary clock designation is to establish which is the main reference clock to the PLLs. The non-primary clockisdesignated as the secondary clockincase the primary clock goes absent and a backup is needed. The PRIMCLK bit (0x34) determines which clock input will be the primary clock. WhenPRIMCLK bitis "0", itwill selectXTALIN/REFIN as the primary, and when"1", itwill selectCLKIN as the primary. The two external reference clocks can be manually selected using the GIN5/CLK_SEL pin, except in Manual Frequency Control (MFC) mode 2, or via programming by hard wiring theCLK_SEL pin and toggling the PRIMCLKbit. Formore details ontheMFC modes, refer to theCONFIGURING MULTI-PURPOSE I/Os section. WhenCLK_SEL is LOW, the primary clock is selected and whenHIGH, the secondary clockisselected. TheSMbits (0x34) mustbe setto"0x" formanual switchoverwhich is detailed in SWITCHOVER MODES section.

GIN5/CLK_SEL	Selected Clock Input
L	Primary
H	Secondary

Crystal Input (XTALIN/REFIN)

The crystal oscillators should befundamental modequartzcrystals: overtone crystals are not suitable. Crystal frequency should be specified for parallel resonance with 50Ω maximum equivalent series resonance.

When the XTALIN/REFIN pin is driven by a crystal, itis important to set the internal oscillator inverter drive strength and internal tuning/load capacitor values correctly to achieve the best clock performance. These values are programmable through either ${ }^{2} \mathrm{C}$ or JTAG interface to allow for maximum compatibility with crystalsfrom various manufacturers, processes, performances, and qualities. The internal load capacitors are true parallel-plate capacitors for ultra-linear performance. Parallel-plate capacitors were chosen to reduce the frequencyshiftthatoccurswhennon-linearload capacitanceinteracts withload, bias, supply, and temperature changes. External non-linear crystal load capacitors should not be used for applications that are sensitive to absolute frequency requirements. The value ofthe internalload capacitors are determined by XTALCAP[7:0]bits, (0x07). Theload capacitance canbe setwith a resolution of0.125pFfor a total crystal load range of 3.5 pF to 35.5 pF . This value should be set to two times the crystal load capacitance value stated by the vendor, subtracting out board capacitance value. Check with the vendor's crystal load capacitance specificationfor the exactsetting totune the internal load capacitor. The following equation governs how the total internal load capacitance is set.
Ex.: For crystal capacitance $=12 \mathrm{pF}$
For board capacitance $=3 \mathrm{pF}$ each leg
XTALCAP $=2 x[12-3]=18 p F$

XTAL load cap $=3.5 p F+$ XTALCAP[7:0] * 0.125pF (Eq. 1)

Parameter	Bits	Step	Min	Max	Units
XTALCAP	8	0.125	0	32	pF

When using an external reference clock instead of a crystal on the XTAL/ REFIN pin, the inputload capacitors may be completely bypassed. This allows for the inputfrequency to be up to 200MHz. When using an external reference clock, the XTALOUT pin mustbe leftfloating, XTALCAP mustbe programmed to the default value of " 0 ", and crystal drive strength bit, XDRV (0x06), must be set to the default value of "11".

CLKIN Pin

CLKIN pin is a regular clock input pin, and can be driven up to 400 MHz .

PRE-SCALER, FEEDBACK-DIVIDER, AND POST-DIVIDER

Each PLL incorporates an 8-bit pre-scaler and a 12-bit feedback divider whichallows the usertogenerate three uniquenon-integer-related frequencies. For output banks OUT2-OUT6, each bank has a 10-bit post-divider. The following equation governs how the frequency on output banks OUT2-6 is calculated.

$$
\begin{equation*}
\text { Fout }=\frac{\text { Fin } *\left(\frac{M}{D}\right)}{P^{*} 2} \tag{Eq.2}
\end{equation*}
$$

Where Fin is the referencefrequency, M is the total feedback-divider value, Dis the pre-scaler value, Pis the total post-dividervalue, andFout isthe resulting output bank frequency. The value 2 in the denominator is due to the divide-by-2 on each of the outputbanks OUT2-6. Note that OUT1 does nothave any type of post-divider. Also, programming any ofthe dividers may cause glitches on the outputs.

Pre-Scaler

$\mathrm{D}[7: 0]$ are the bits used to program the pre-scaler for each PLL, D0 for PLL0, D1 for PLL1, and D2 for PLL2. The pre-scalers divide down the reference clock with integer values ranging from 1 to 255 . To maintainlow jitter, thedivided down clockmustbehigherthan 400 KHz ; itis besttouse the smallest Ddividervalue possible. IfD is setto '0x00', then this will power down the PLL and all the outputs associated with thatPLL.

Feedback-Divider

$\mathrm{N}[11: 0]$ and $\mathrm{A}[3: 0]$ are the bits used to program the feedback-divider for PLLO (N 0 and A 0) and PLL1 (N1 and A1). If spread spectrum generation is enabled foreither PLL0 or PLL1, then the SS_OFFSET[5:0] bits ($0 \times 61,0 \times 69$) would be factored into the overall feedback divider value. See the SPREAD SPECTRUM GENERATION section for more details onhow to configure PLLO and PLL1 when spread spectrum is enabled. The two PLLs canalso be configured forfractional divide ratios. See FRACTIONALDIVIDER for more details. ForPLL2, only the N[11:0] bits (N2) are used to program its feedback divider and there is no spread spectrum generation and fractional divides capability. The12-bitfeedback-divider integer values range from 1 to 4095.

The following equations govern how the feedback divider value is set. Note that the equations are different for PLL0/PLL1 and PLL2

```
PLLO and PLL1:
\(\mathrm{M}=2^{*} \mathrm{~N}[11: 0]+\mathrm{A}[3: 0]+1+\) SS_OFFSET[5:0]* 1/64
\(M=2^{*} \mathrm{~N}[11: 0]+\mathrm{A}[3: 0]+1\) (spread spectrum disabled) (Eq. 4)
\(A[3: 0]=0000=-1\)
    \(=0001=1\)
    \(=0010=2\)
    \(=0011=3\)
    \(=1111=15\)
```

Note: $A[3: 0]<(N[11: 0]-5)$, must be met when using A. N cannot be programmed with a value of 4,8 , or 16 when using A.

PLL2:
 $M=N[11: 0] \quad$ (Eq. 5)

The user can achieve an even or odd integer divide ratio for both PLLO and PLL1 by setting the A[3:0] bits accordingly and disabling the spread spectrum. A fractional divide can also be setfor PLLO and PLL1 by using the A[3:0] bits in conjunction with the SS_OFFSET[5:0] bits, which is detailed in the FRACTIONAL DIVIDER section. Note thattheVCOhas a frequency range of 10 MHz to 1200 MHz . To maintainlowjitter, itis besttomaximizethe VCO frequency. For example, if the reference clock is 100 MHz and a 200 MHz clock is required, to achieve the bestjitter performance, multiply the 100 MHz by 12 to get the VCO running at the highestpossible frequency of 1200 MHz and then divide it downto get 200 MHz . Or ifthe reference clock is 25 MHz and 20MHz is the required clock, multiply the 25 MHz by 40 to get the VCO running at 1000 MHz and then divide it down to get 20 MHz . If is set to ' 0 x 00 ', the VCO will slew to the minimum frequency.

Post-Divider

Q[9:0] are the bits used to program the 10-bit post-dividers on output banks OUT2-6. OUT1 bank does not have a 10-bit post-divider or any other postdivide along its path. The 10-bit post-dividers will divide down the output banks' frequency with integer values ranging from 1 to 1023.

There is the option to choose between disabling the post-divider, utilizing a div/1, a div/2, or the 10-bit post-divider by using the PM[1:0] bits. Each bank, except for OUT1, has a set of PM bits. When disabling the post-divider, no clock will appear at the outputs, but will remain powered on. The values are listed in the table below.

PM[1:0]	P Post-Divider
00	disabled
01	$\operatorname{div} / 1$
10	$\operatorname{div} / 2$
11	Q[9:0] +2 (Eq. 6)

Post-Divider Diagram

Note that the actual 10-bit post-divider value has a 2 added to the integer value Qand the outputs are routed through another div/2 block. The post-divider should never be disabled unless the outputbank will never be used during normal operation. The output frequency range for LVTTL outputs are from 4.9 KHz to 200 MHz . The output frequency range for LVPECL/LVDS outputs are from 4.9 KHz to 500 MHz .

SPREAD SPECTRUM GENERATION

PLL0 and PLL1 support spread spectrum generation capability, which users have the option ofturning on and off. Spread spectrum profile, frequency, and spread are fully programmable (within limits). The programmable spread spectrum generation parameters are TSSC[3:0], NSSC[3:0], SS_OFFSET[5:0], SD[3:0], DITH, and X2 bits. These bits are in the memory address range of 0×60 to 0×67 for PLL0 and 0×68 to $0 \times 6 F$ for PLL1. The spread spectrum generation on PLL0 \& PLL1 can be enabled/disabled using the TSSC[3:0] bits. To enable spread spectrum, set TSSC > '0' and set NSSC, SD[3:0], SD[5:0], and the $A[3: 0]$ in the total M value accordingly. And to disable, set TSSC = ' 0 '.

TSSC[3:0]

These bits are used to determine the number of phase/frequency detector cycles per spread spectrum cycle (ssc) steps. The modulation frequency can be calculated with the TSSC bits in conjunction with the NSSC bits. Valid TSSC integer values for the modulation frequency range from 5 to 14.

NSSC[3:0]

These bits are used to determine the number of delta-encoded samples used for a single quadrant of the spread spectrum waveform. All four quadrants of the spread spectrum waveform are mirror images of each other. The modulation frequency is also calculated based off the NSSC bits in conjunction with the TSSC bits. Valid NSSC integer values range from 1 to 6.

SS_OFFSET[5:0]

These bits are used to program the fractional offset with respect to the nominal M integer value. For center spread, the SS_OFFSET should be set to '0' so the spread spectrum waveform is about the nominal M (Mnom) value. For down spread, the SS_OFFSET > '0' so the spread spectrum wavform is about the (Mideal-1=Mnom) value. The downspread percentage can be thought of interms of center spread. Forexample, adownspread of-1\% canalso beconsidered as a center spread of $\pm 0.5 \%$ but with Mnom shifted down by one and offset. The SS_OFFSET has integer values ranging from 0 to 63 .

SD[3:0]
These bits are used to shape the profile of the spread spectrum waveform. These are delta-encoded samples of the waveform. There are twelve sets of SD samples for each PLL. TheNSSC bits determine how many of these samples are used for the waveform. The sum of these delta-encoded samples (sigma-delta-encoded samples) determine the amount of spread and should not exceed (63-SS_OFFSET). The maximum spread is inversely proportional to the nominal M integer value.

DITH
This bitis for dithering the sigma-delta-encoded samples. This will randomize the least-significant bit ofthe inputto the spread spectrum modulator. Setthe bit to '1'to enable dithering.

X2
This bit will double the total value of the sigma-delta-encoded-samples which will increase the amplitude of the spread spectrum waveform by a factor oftwo. When X2 is '0', the amplitude remains nominal but if set to ' 1 ', the amplitude is increased by x 2 .

The following equations govern how the spread spectrum is set:
Tssc $=\operatorname{TSSC[3:0]}+2 \quad$ (Eq. 7)

Nssc = NSSC[3:0] *2 (Eq. 8)
SD[3:0]k $=\mathrm{S}_{\mathrm{J}+1}$ (unencoded) - $\mathrm{S}_{\mathrm{J}}($ unencoded) \quad (Eq. 9)
where S_{s} is the unencoded sample out of a possible 12 and SDk $_{\mathrm{k}}$ is the delta-encoded sample out of a possible 12.
Amplitude $=\frac{\left(2^{*} \mathrm{~N}[11: 0]+\mathrm{A}[3: 0]+1\right) * \text { Spread\% / } 100}{2} \quad$ (Eq. 10)
if $1<A m p<2$, then set X 2 bit to ' 1 '.

Modulation frequency:
FpFD $=$ Fin / D (Eq. 11)
Fvco $=$ Fpfd * Mnom (Eq. 12)
Fssc $=$ Fpfd $/(4$ * Nssc * Tssc) (Eq. 13)

Spread:

$\Sigma \Delta=\mathrm{SD}_{0}+\mathrm{SD}_{1}+\mathrm{SD}_{2}+\ldots+\mathrm{SD}_{11}$
the number of samples used depends on the Nssc value
$\Sigma \Delta \leq 63$ - SS_OFFSET
\pm Spread $\%=\frac{\Sigma \Delta^{*} 100}{64^{*}\left(2^{*} N[11: 0]+A\{3: 0\}+1\right)}$
\pm Max Spread\% / 100 = $1 /$ Mnom or $2 /$ Mnом (X2=1)
Profile:
Waveform starts with SS_OFFSET, SS_OFFSET + SDJ, SS_OFFSET + SD ${ }_{\mathrm{J}+1}$, etc.

Spread Spectrum Using Sinusoidal Profile

Example

Fin $=25 \mathrm{MHz}$, Fout $=100 \mathrm{MHz}, \mathrm{Fssc}=33 \mathrm{KHz}$ with center spread of $\pm 2 \%$. Find the necessary spread spectrum register settings.
Since the spread is center, the SS_OFFSET can be setto '0'. Solve for the nominal M value; keep in mind that the nominal M should be chosen to maximize the VCO. Start with D $=1$, using Eq. 10 and Eq. 11 .

Mnom $=1200 \mathrm{MHz} / 25 \mathrm{MHz}=48$
Using Eq.4, we arbitrarily choose $N=22, A=3$. Now that we have the nominal M value, we can determine TSSC and NSSC by using Eq. 12 .
Nssc * Tssc $=25 \mathrm{MHz} /(33 \mathrm{KHz} * 4)=190$
However, using Eq. 7 and Eq. 8 , we find that the closest value is when TSSC $=14$ and NSSC $=6$. Keep in mind to maximize the number of samples used to enhance the profile of the spread spectrum waveform.

Tssc $=14+2=16$
Nssc $=6$ * $2=12$
Nssc*Tssc $=192$

Use Eq. 14 to determine the value of the sigma-delta-encoded samples.
$\pm 2 \%=\frac{\Sigma \Delta^{*} 100}{64 * 48}$
$\Sigma \Delta=61.44$

Either round up or down to the nearestinteger value. Therefore, we end up with 61 or 62 for sigma-delta-encoded samples. Since the sigma-delta-encoded samples must not exceed 63 with SS_OFFSET set to ' 0 ', 61 or 62 is well within the limits. It is the discretion of the user to define the shape of the profile that is better suited for the intended application.

Using Eq. 14 again, the actual spread for the sigma-delta-encoded samples of 61 and 62 are $\pm 1.99 \%$ and $\pm 2.02 \%$, respectively.
Use Eq. 10 to determine if the X 2 bit needs to be set;
Amplitude $=\frac{48 *(1.99 \text { or } 2.02) / 100}{2}=0.48<1$

Therefore, the $\mathrm{X} 2=10$ '. The dither bit is left to the discretion of the user.
The example above was of a center spread using spread spectrum. For down spread, the nominal M value can be set one integer value lower to 43 .
Note that the 5 V 9885 T should not be programmed with TSSC > ' 0 ', SS_OFFSET = ' 0 ', and SD = '0' in order to prevent an unstable state in the modulator. The PLL loop bandwidth mustbe atleast 10x the modulation frequency along with higher damping (larger cuz) to prevent the spread spectrum frombeing filtered and reduce extraneous noise. Referto the LOOPFILTER section for more detail on $\omega \mathbf{z}$. The A[3:0] mustbe used for spread spectrum, even ifthe total multiplier value is an even integer.

FRACTIONAL DIVIDER

There is the option for the feedback-divider to be programmed as a fractional divider for only PLLO and PLL. By setting TSSC > '0' and SD bits to ' 0 ', the SS_OFFSET bits would determine the fractional divide value. See the SPREAD SPECTRUM GENERATION section for more details on the TSSC, SD, and SS_OFFSET bits. The following equation governs how the fractional divide value is set.

$$
\text { M = 2*N[11:0] + A[3:0] + } 1 \text { + SS_OFFSET[5:0] *1/64 }
$$

The spread spectrum parameters such as the modulation frequency and profile will not be enabled nor will it have any impact on the PLL output when the PLL is programmed for fractional divide.

The following is an example of how to set the fractional divider.

Example

Fin $=20 \mathrm{MHz}$, Fout1 $=168.75 \mathrm{MHz}$, Fout2 $=350 \mathrm{MHz}$
Solving for 350MHz using Eq. 2 and Eq. 3 with PLL0 and spread spectrum off,
$350 \mathrm{MHz}=20 \mathrm{MHz}$ * (M/D)/(P *2)
For better jitter performance, keep D as small as possible
$(350 \mathrm{MHz} * 2 / 20 \mathrm{MHz})=(\mathrm{M} / \mathrm{P})=35$

Therefore, we have $\mathrm{D}=1, \mathrm{M}=35(\mathrm{~N}=16, \mathrm{~A}=2)$ for PLL 0 with $\mathrm{P}=1$ on output bank4 resulting in 350 MHz .
Solving for 168.75MHz with PLL1 and fractional divide enabled:
$168.75 \mathrm{MHz}=20 \mathrm{MHz}$ * (M / D)/(P * 2$)$
$168.75 \mathrm{MHz} * 2 / 20 \mathrm{MHz}=\mathrm{M} / \mathrm{P}=16.875 / 1$ or $33.75 / 2$

The 33.75 value is chosen to achieve the highest VCO frequency possible. Next step is to figure out the setting for the fractional divide using Eq.3.
$33.75=2^{*} \mathrm{~N}+\mathrm{A}+1+$ SS_OFFSET * $1 / 64$
Integer value 33 can be determined by N and A , thus leaving 0.75 left to be solved.
2* $\mathrm{N}+\mathrm{A}+1=33$
SS_OFFSET $=64$ * $0.75=48$
Therefore, we have $\mathrm{D}=1, \mathrm{M}=33.75(\mathrm{~N}=15, \mathrm{~A}=2$, SS_OFFSET=48) for PLL1 with $\mathrm{P}=2$ on an output bank resulting in 168.75 MHz .
The fractional divider can be determined if it is needed by following the steps in the previous example. Note that the 5 V 9885 T should not be programmed with TSSC > ' 0 ', SS_OFFSET = ' 0 ', and SD = ' 0 ' in order to prevent an unstable state in the modulator. The $A[3: 0]$ must be used and set to be greater than '2' for a more accurate fractional divide.

LOOP FILTER

The loop filter for eachPLL can be programmed to optimize the jitter performance. The low-passfrequency response of the PLL is the mechanism that dictates the jitter transfer characteristics. The loop bandwidth can beextracted from the jitter transfer. A narrow loop bandwidth is good for jitter attenuation while a wide loop bandwidth is best for low jitter generation. The specific loop filter components that can be programmed are the resistor via the RZ[3:0] bits, pole capacitor via the $\mathrm{CZ}[3: 0]$ bits, zero capacitor via the $\mathrm{CP}[3: 0]$ bits, and the charge pump current via the IP[2:0] bits.

The following equations govern how the loop filter is set.

Charge Pump and Loop Filter Configuration

$$
\begin{array}{ll}
\text { Resistor }(\mathrm{Rz})=0.3 \mathrm{~K} \Omega+\mathrm{RZ}[3: 0]]^{*} 1 \mathrm{~K} \Omega & \text { (Eq. 15) } \tag{Eq.15}\\
\text { Zero capacitor }(\mathrm{Cz})=6 \mathrm{pF}+\mathrm{CZ}[3: 0] * 27.2 \mathrm{pF} & \text { (Eq. 16) } \\
\text { Pole capacitor }(\mathrm{Cp})=1.3 \mathrm{pF}+\mathrm{CP}[3: 0]^{*} 0.75 \mathrm{pF} & \text { (Eq. 17) } \\
\text { Charge pump current }(\mathrm{lp})=5^{*} 2^{\mid p[2: 0]} \mu \mathrm{A} & \text { (Eq. 18) }
\end{array}
$$

Parameter	Bits	Step	Min	Max	Units
RZ	4	1	0.3	15.3	$\mathrm{~K} \Omega$
CZ	4	27.2	6	414	pF
CP	4	0.75	1.3	12.55	pF
PP	3	2	5	640	$\mu \mathrm{~A}$

PLL loop filter design is beyond the scope of this datasheet. Refer to design procedures for 3-order charge-pump based PLLs. For the sake of simplicity, the fastest and easiest way to calculate the PLL loop bandwidth (Fc) given the programmable loop filter parameters is as follows.

PLL Loop Bandwidth:

Charge pump gain $(\mathrm{K} \phi)=\mathrm{lp} / 2 \pi \quad$ (Eq. 19)
VCO gain $(\mathrm{Kvco})=950 \mathrm{MHz} / \mathrm{V}$ * $2 \pi \quad$ (Eq. 20)
$M=$ Total multiplier value (See the PRE-SCALERS, FEEDBACK-DIVIDERS, POST-DIVIDERS section for more detail)
$\omega c=\frac{R z{ }^{*} K \phi^{*} K v c o{ }^{*} \mathrm{Cz}}{\mathrm{M}^{*}(\overline{\mathrm{C}} \mathrm{z}+\mathrm{Cp})}$
$\mathrm{Fc}=\omega / 2 \pi$
(Eq. 22)

Note, the phase/frequency detector frequency (FPFD) is typically seven times the PLL closed-loop bandwidth (Fc) but too high of a ratio will reduce your phase margin thus compromising loop stability.

To determine if the loop is stable, the phase margin ($\omega \mathrm{m}$) would need to be calculated as follows.

Phase Margin:

$$
\begin{align*}
& \omega z=1 /\left(\mathrm{Rz}{ }^{*} \mathrm{Cz}\right) \tag{Eq.23}\\
& \omega p=\frac{\mathrm{Cz}+\mathrm{Cp}}{\mathrm{Rz}^{*} \mathrm{Cz}{ }^{*} \mathrm{Cp}} \tag{Eq.24}\\
& \phi \mathrm{~m}=(360 / 2 \pi)^{*}\left[\tan ^{-1}(\omega \mathrm{c} / \omega \mathrm{z})-\tan ^{-1}(\omega / \omega)\right] \tag{Eq.25}
\end{align*}
$$

To ensure stability in the loop, the phase margin is recommended to be $>60^{\circ}$ buttoo high will result in the lock time being excessively long. Certain loop filter parameters would need to be compromised to not only meet a required loop bandwidth but to also maintain loop stability.

Example

$\mathrm{Fc}=150 \mathrm{KHz}$ is the desired loop bandwidth. The total M value is 850 . The ratio of $\omega p / \omega c$ should be at least 4 . A rule of thumb that will help to aid the way, the μ / ω c ratio should be at least 4. Given Fc andM, an optimal loop filter setting needs to be solved for that will meet both the PLL loop bandwidth and maintain loopstability.

The charge pump gain should be relatively small as possible to achieve a low loop bandwidth.
$\mathrm{lp}=40 \mathrm{uA}$.
$K \phi^{*} \mathrm{Kvco}=950 \mathrm{MHz} / \mathrm{V} * 40 \mathrm{uA}=38000 \mathrm{~A} / \mathrm{Vs}$
Loop Bandwidths
$\omega=2 \pi * F c=9.42 \times 10^{5} \mathrm{~s}^{-1}$
$\omega z=\omega p / \omega=4$
$\omega c^{2}=\omega p^{*} \omega z$
$\omega p=\frac{C z+C p}{R z^{*} C z{ }^{*} C p}=\omega z(1+C z / C p)$
Solving for Cz, Cp, and Rz
Knowing $\omega=\underline{R z *}{ }^{*} \phi^{*} K v c o$ * $C z$ and substituting in the equations from above,

$$
M^{*}(C z+C p)
$$

$C z \ggg C p$, therefore, we can easily derive $C p$ to be
$\mathrm{Cp}=\frac{\mathrm{K} \phi^{*} \mathrm{Kvco}}{\mathrm{M}^{*} \omega \mathrm{C}^{2 *} \omega \mathrm{Z}}=12.60 \mathrm{pF}$

Similarly for Cz and Rz
$C z=\frac{K \phi^{*} K v c o{ }^{*}\left(\omega z^{2}-1\right)=C p *\left(\omega z^{2}-1\right)}{M^{*} \omega^{2}{ }^{*} \omega u z}=189 p F$
$\mathrm{Rz}=\frac{\mathrm{M}^{*} \omega^{*} \omega z^{2}}{\mathrm{~K} \phi^{*} \operatorname{Kvco}{ }^{*}\left(\omega z^{2}-1\right)}=22.48 \mathrm{~K} \Omega$
Based on the loop filter parameter equations from above, since there are no possible values of 12.60 pF for $\mathrm{Cp}, 189 \mathrm{pF}$ for Cz , and $22.48 \mathrm{~K} \Omega$ for Rz , the next possible values within the loop filter settings are $12.55 \mathrm{pF}(C P[3: 0]=1111), 196.4 \mathrm{pF}(C Z[3: 0]=0111)$, and $15.3 \mathrm{~K} \Omega(\mathrm{RZ}[3: 0]=1111)$, respectively. This loop filter setting will yield a loop bandwidth of about 102 KHz . The phase margin must be checked for loop stability.

$$
\phi m=(360 / 2 \pi)^{*}\left[\tan ^{-1}\left(6.41 \times 10^{5} \mathrm{~s}^{-1} / 3.33 \times 10^{5} \mathrm{~s}^{-1}\right)-\tan ^{-1}\left(6.41 \times 10^{5} \mathrm{~s}^{-1} / 5.54 \times 10^{6} \mathrm{~s}^{-1}\right)\right]=56^{\circ}
$$

Although slightly below 60°, the phase margin would be acceptable with a fairly stable loop.

CONFIGURING THE MULTI-PURPOSE I/Os

The 5V9885T can operate in four distinct modes. These modes are controlled by the MFC bit ($0 x 04$) and the ${ }^{2} \mathrm{C} / \overline{\mathrm{TAGG}} \mathrm{pin}$. The general purpose I/O pins (GIN0, GIN1, GIN2, GIN3, GIN4, GIN5) have different uses depending on the mode of operation. The four available modes of operation are:

1) Manual Frequency Control (MFC) Mode for PLLO Only
2) Manual Frequency Control (MFC) Mode for all three PLLs
3) $I^{2} \mathrm{C}$ Programming Mode
4) JTAG Programming Mode

Along with the GINx pins are also GOUTx outputpins that can take up a differentfunction depending on the mode of operation. See table belowfordescription

Multi-Purpose Pins	Other Signal Functions	
GIN0	SDAT / TDI	I^{2} C serial data input/JTAG serial data input
GIN1	SCLK / TCK	$I^{2} C$ clock input / JTAG clock input
GIN2	TMS	JTAG control signal tothe TAP controller state machine
GIN3	SUSPEND	Suspends all outputs of PLL (Active High)
GIN4	TRST	JTAG active LOW input to asynchronously reset the BST
GIN5	CLK_SEL	Reference clock select between XTALIN/REFIN and CLKIN
GOUT0	TDO / LOSS_LOCK	JTAG serial data output/Detects loss ofPLL lock ${ }^{(1)}$
GOUT1	LOSS_CLKIN	Detects loss of the primary clock source ${ }^{(1)}$

NOTE:

1. Please see detail description in Loss of Lock and Input Clock section.

Each PLL's programming registers can store up to four different Dxand Mx configurations in combination with two different Pconfigurations in MFC modes. The post-divider should never be disabled in any of the two P configurations unless the output bank will never be used during normal operation. The PLL's loop filter settings also has fourdifferent configurations to store and select from. This will be explained in the MODE1 and MODE2 sections. The use of the GINx pins in MFC mode control the selection of these configurations.

MODE1 - Manual Frequency Control (MFC=1) Mode for PLLO Only
In this mode, only 8 configurations of PLLO can be changed during operation. The $\mathrm{GINO}, \mathrm{GIN} 1$ and GIN 2 pins control the selection of eight different configurations ($\mathrm{D}, \mathrm{M}, \mathrm{Rz}, \mathrm{Cz}, \mathrm{Cp}$ and Ip) of PLLO. GIN3 becomes PLL SUSPEND pin, GIN4 is not available to users, and GIN5 becomes CLK_SEL pin. The output GOUTO will become an indicator for loss of PLL lock (LOSS_LOCK). GOUT1 pin will become an indicator for loss of the primary clock (LOSS_CLKIN).

The PLLO has 4 sets of dedicated registers for D, M, Rz, Cz, Cp, Ip and ODIV. For additional 4 sets of registers, the PLLO uses registers from CONFIG2 and CONFIG3 of PLL1 and PLL2. The PLL1 and PLL2 will still be fully operational, but have only one fixed configuration in this mode, and the default configuration will be set to CONFIG0 of PLL1 and CONFIG0 of PLL2. (Please see page 18 for register location.)

The output banks will each have two P configurations that can be associated with each of the PLL configurations. Each of the two P configurations has its own set of PM bits (See the PRE-SCALERS, FEEDBACK-DIVIDERS, POST-DIVIDERS section for more detail on the PM bits). Use the ODIV bit to choose which post-divider configuration to associate with a specific PLL configuration.

To enter this mode, users must set MFC bitto "1", and I2C/JTAG pin must be left floating.

GIN2 Pin	GIN1 Pin	GIN0 Pin	PLLO Configuration Selection (Mode 1)
0	0	0	Configuration0
0	0	1	Configuration1
0	1	0	Configuration2
0	1	1	Configuration3
1	0	0	Configuration4
1	0	1	Configuration5
1	1	0	Configuration6
1	1	1	Configuration7

MODE2 - Manual Frequency Control (MFC=0) Mode for all PLLs

Inthis mode, the configuration of PLL0, PLL1, and PLL2 can be changed during operation. The GINx pins are used to control the selection of up to fourdifferent Dx, Mx, RZx, CZx, CPx, and IPx configurations for each PLL. GIN0 and GIN1 become configuration selection pins for D0 and M0 of PLL0, GIN2 and GIN3 become configuration selection pins for PLL1, and GIN4 and GIN5 become configuration selection pins forD2 and M2 of PLL2. The output GOUT0 will become an indicator for loss of PLL lock (LOSS_LOCK). GOUT1 pin will become an indicator for loss of the primary clock (LOSS_CLKIN).

The output banks will have two differentP configurations to choose from for each of the four PLL configurations. Each of the two P configurations has its own set of PM bits (See the PRE-SCALERS, FEEDBACK-DIVIDERS, POST-DIVIDERS section for more detail on the PM bits). Use the ODIV bitto choose which post-divider configuration to associate with a specific PLL configuration. Forexample, ifODIV2_CONFIG2=1, then when Config2 is selected Qx[9:0]_CONFIG1 is selected as the post-dividervalue to be used. Note that there is an ODIVxbitfor each ofthe PLL configurations. In this way, the post-divider values can change with the configuration.

To enter this mode, users must set MFC bit to " 0 ", and ${ }^{2} \mathrm{C} / \mathrm{JTAG}$ pin must be left floating.

GIN1 Pin	GIN0 Pin	PLLO Configuration Selection (Mode 2)
0	0	Configuration0
0	1	Configuration1
1	0	Configuration2
1	1	Configuration3

GIN5 Pin	GIN4 Pin	PLL2 Configuration Selection (Mode 2)
0	0	Configuration0
0	1	Configuration1
1	0	Configuration2
1	1	Configuration3

GIN3 Pin	GIN2 Pin	PLL1 Configuration Selection (Mode 2)
0	0	Configuration0
0	1	Configuration1
1	0	Configuration2
1	1	Configuration3

MODE3-I²C Programming Mode

Inthis mode, GIN0, GIN1, GIN3 and GIN5 becomeSDAT (I2Cdata), SCLK (I ${ }^{2}$ Cclock), SUSPEND andCLK_SEL signal pins, respectively. TheoutputGOUT0 will become an indicator for loss of PLL lock(LOSS_LOCK). GOUT1 pin will become an indicator for loss of the primary clock(LOSS_CLKIN). GIN2 and GIN4 are not available to users.

To enter this mode, $I^{2} \mathrm{C} / \overline{\mathrm{JTAG}}$ pin must be set HIGH.

MODE4- JTAG Programming Mode

In this mode, GIN0, GIN1, GIN2, GIN3, GIN4 and GIN5 will become TDI(JTAG datain), TCK(JTAG clock), TMS (JTAG control signal), SUSPEND, TRST (JTAG reset) and CLK_SEL signal pins, respectively. The output GOUT0 will become JTAG TDO signal, and GOUT1 will be an indicator for loss of the selected clock(LOSS_CLKIN).

To enter this mode, ${ }^{2} \mathrm{C} / \mathrm{JTAG}$ pin must be setLOW.

Multi-Purpose pins	Manual Frequency Control modes			
	Mode1	Mode2	JTAG	I'C
GIN0	GIN0	GIN0	TDI	SDAT
GIN1	GIN1	GIN1	TCK	SCLK
GIN2	GIN2	GIN2	TMS	n/a
GIN3	SUSPEND	GIN3	SUSPEND	SUSPEND
GIN4	n/a	GIN4	TRST	n/a
GIN5	CLK_SEL	GIN5 ${ }^{(1)}$	CLK_SEL	CLK_SEL
GOUT0	LOSS_LOCK	LOSS_LOCK	TDO	LOSS_LOCK
GOUT1	LOSS_CLKIN	LOSS_CLKIN	LOSS_CLKIN	LOSS_CLKIN

NOTE:

1. The PLL(s) will lock onto the primary clock and the manual switchover can be controlled by the PRIMCLK bit.

Understanding the GIN Signals

During power up, the part will virtually be in MFC mode2, therefore, the values of GIN4, GIN3, GIN2, GIN1 and GINO will be latched and used for PLL configuration selection, regardless of the state of the ${ }^{2} C / \overline{T T A G}$ pin. GIN5 is notlatched, and will assume the LOW state internally when in programming mode. This means that when in programming mode, the PLL configuration can only be changed by writing directly to the registers of the currently selected configuration. When in MFC mode 2, configuration 0 or 1 ($G 1 N 5=0$) should be selected ify you do not want to change configurations when entering or leaving programming mode. The GIN pins should be held LOW during power up to select configuration0 as default.
When not in programming mode, the GIN inputs directly control the selected configuration. The internal GINx signals can be individually disabled via programming the GINEN bits (0×06). When disabled by setting GINENx to " 0 ", the GINx inputs may be lefffloating, but during power up, the GIN pins will still latch. Disabled inputs are interpreted as LOW by the internal state machines. Even if disabled, GIN2, GIN1, GIN0 and GIN4 pins will be enabled if required for ${ }^{2}$ C or JTAG programming functions when in programming mode. The SUSPEND and CLK_SEL functions on the GIN3 and GIN5 pins, respectively, will be rendered completely non-functional when disabled.

SHUTDOWN/SUSPEND/ENABLE OF OUTPUTS

There are two external pins along with internal bits that control the enabling/disabling of the output banks. The two pins are the SHUTDOWN/OE pin and the GIN3/SUSPEND pin. TheSHUTDOWN/OE pin can be programmed tofunction as a outputenable orglobal shutdown. The polarity of the SHUTDOWN/ OE signal pin can be programmed to be either active HIGH or LOW with the SP bit ($0 \times 1 \mathrm{C}$). When SP is " 0 ", the pin becomes active HIGH and when SP is "1", the pin becomes active LOW. The SH bit(0x1C) determines the function of the SHUTDOWN/OE signal pin. If SH is " 1 ", the signal pin is SHUTDOWN and functions as a global shutdown. This will override the $\operatorname{OEx}(0 \times 1 \mathrm{C}), \mathrm{OSx}(0 \times 1 \mathrm{D})$, and $\mathrm{PLLSx}(0 \mathrm{x} 1 \mathrm{E})$ bits. If SH is " 0 ", the signal pin is OE and functions as an enable/disable of the output banks. If used as an output enable/disable, each output bank can be individually programmed to be enabled or disabled by the OE pin.by setting OExbits to "1". If the OE signal pin is asserted, the output banks that has their corresponding OExbit setto "1" will be disabled. The OEMx bits determine the outputs' disable state. When setto "Ox" the outputs will betristated. When setto"10", the outputs will be pulled low. When setto"11", the outputs will be pulled high. Inverted outputs will be parked in the opposite state. Ifthe OEx bits are setto " 0 ", the states of the corresponding outputbanks will notbe impacted by the state ofthe OEpin. Toindividuallyenable/disable viaprogramming instead ofthe OE pin, hard wirethe OEpinto Vdd or GND (depending ifit is active HIGH or LOW) as if to disable the outputs. Then toggle the OEx bits to either "0" to enable or "1" to disable.

When the chip is in shutdown, the outputs, the reference oscillator, and the $I^{2} \mathrm{C} / \mathrm{JTAG}$ pin are powered down. The outputs will be tristated and the $I^{2} \mathrm{C}$ /JTAG pin will be setto MFC mode (MID level). Programming will notbe allowed. The GINxpins and clockinputs remain operational. The PLL is notdisabled. The SHUTDOWN pin must be reasserted in order to program the part or to resume operation.

The GIN3/SUSPEND pin, when used as a SUSPEND function, can be used to power down the PLL and/or output banks.. Each output bank can be individually programmed to be enabled or disabled by the SUSPEND signal pin by setting the OSxbitsto"1". Ifthe SUSPEND signal pin is asserted, the output banks thathas their corresponding OSx xitsetto "1" will be powered down and outputs tristated. Ifthe OSx xits are setto "0", the states of the corresponding output banks will not be impacted by the state of the SUSPEND pin. There is also an option to suspend individual PLLs by setting the PLLSx bits ($0 \times 1 \mathrm{E}$) to "1". This will associate the PLL to the SUSPEND pin. When the pin is asserted, the corresponding PLLs will be powered down. It will not only power down the PLL but also any output bank associated with it. The PLLSx bits will override the OSx bits.

In the event of a PLL suspend, the PLL must achieve lock again after it has been re-enabled, In the event of a global shutdown, the PLL does not have to re-acquire lock since itis not disabled.

MANUAL FREQUENCY CONTROL (MFC) BLOCK DIAGRAM

NOTES:
This illustration shows how the configurations are arranged for each PLL. There is an ODIV bit associated with each of the four configurations.

- GIN0 and GIN1 control four configurations from PLLO.
- GIN2 and GIN3 control four configurations from PLL1.
- GIN4 and GIN4 control four configurations from PLL2.
- ODIV from each configuration determines the selection of two Output Divider Px Configurations.

MANUAL FREQUENCY CONTROL (MFC) BLOCK DIAGRAM

MFC $=1$

NOTES:
This illustration shows how the configurations are arranged for PLLO. Register location for Config_4 and Config_5 are taken from PLL1, and Config_6 and Config_7 are taken from PLL2. There is an ODIV bit associated with each of the configurations.

- GIN0, GIN1, and GIN2 control eight shaded configurations for PLLO.
- ODIV from each configuration determines the selection of two Output Divider Px Configurations.

BLOCK DIAGRAM FOR SHUTDOWN/OE CONTROL SIGNAL

NOTE:
This illustration shows the internal logic behind the SHUTDOWN/OE pin and the bits associated with it.

POWER UP AND POWER SAVING FEATURES

If a global shutdown is enabled, SHUTDOWN pin asserted, most of the chip except for the PLLs will be powered down. In order to have a complete power down of the chip, the PLLs must be powered down via the SUSPEND function or by setting the pre-scaler bits to '0x00' and disable the internal GINx signals via the enable bits at memory address 0×05. Note that the register bits will not lose their state in the event of a chip power-down. The only possibility that the register bits will lose their state is if the part was power-cycled. After coming out of shutdown mode, the PLLs will require time to relock.

During power up, the values of GIN4, GIN3, GIN2, GIN1 and GIN0 will be latched and used for PLL configuration selection, regardless of the state of the $I^{2} \mathrm{C} / \overline{\mathrm{T} A G}$ pin and GINx being disabled via the GINENx bits. GIN5 will have an internal state of LOW. The GIN pins should be held LOW during power up to select configuration 0 as default. The output levels will be at an undefined state during power up.

The post-divider should never be disabled via PM bits after power up, or else it will render the output bank completely non-functional during normal operation, (unless the output bank itself will not be used at all).

During power up, the Vdd ramp must be monotonic.

LOSS OF LOCK AND INPUT CLOCK

The device employs a loss of lock and loss of input clock detection circuitry. The GOUT0/LOSS_LOCK and GOUT1/LOSS_CLKIN are the outputs that indicate such failures. LOSS_LOCK signal will be asserted if any of the three powered up PLLs loses frequency lock for any event other than PLL shutdown. Lock is determined by checking that the reference and feedback clocks are within $1 / 2$ period of each other.Loss_LOCK signal may be falsely asserted when

- Spread Spectrum is turned on for any of the PLLs
- Fractional divider is used for any of the PLLs
- the reference and feedback clocks are not within $1 / 2$ period of each other.

LOSS_CLKIN is asserted when the currently selected clock is lost or is asserted when both clocks are lost. In the event of the selected clock being absent up on power up, the loss of the selected clock detection circuitry will reference an internal oscillator. LOSS_LOCK and LOSS_CLKIN cannot be used as reliable inputs to other devices.

SWITCHOVER MODES

The IDT5V9885T features redundant clock inputs which supports both Automatic and Manual switchover mode. These two modes are determined by the configuration bits, SM (0x34). The primary clock source can be programmed, via the PRIMCLK bit, to be either XTALIN/REFIN or CLKIN, which is determined by the PRIMCLK bit. The other clock source input will be considered as the secondary source. This is more detailed in the 'REFERENCE CLOCK INPUT PINS AND SELECTION'. Note that the switchover modes are asynchronous. If the reference clocks are directly routed to OUTx with no phase relationship, short pulses can be generated during switchover. The automatic switchover mode will work only when the primary clock source is XTALIN/REFIN.

MANUAL SWITCHOVER MODE

When $\mathrm{SM}[1: 0]$ is " 0 x ", the redundant inputs are in manual switchover mode. In this mode, CLK_SEL pin is used to switch between the primary and secondary clock sources. As previously mentioned, the primary and secondary clock source setting is determined by the PRIMCLK bit. During the switchover, no glitches will occur at the output of the device, although there may be frequency and phase drift, depending on the exact phase and frequency relationship between the primary and secondary clocks. If GOUT1 is used as LOSS_CLKIN, it indicates loss of primary clock.

AUTOMATIC SWITCHOVER MODE

When SM[1:0] is "11", the redundant inputs are in automatic revertive switchover mode.

Revertive

The input clock selection will switch to the secondary clock source when there are no transitions on the primary clock source. LOSS_CLKIN signals will be asserted. After a stable and valid primary clock source is present, the input clock selection will automatically switch back to the primary clock source and LOSS_CLKIN signal will be deasserted. TheCLK_SEL pin can be left floating in this auto-revertive mode. Note that both clock inputs must be at the same frequency (within1000 ppm) in order for the auto-revertive switchover to function properly. If both reference clocks are at different frequencies, the device will always remain on the primary clock unless it is absent for two secondary clock cycles.

CLOCK SWITCH MATRIX AND OUTPUTS

All three PLL outputs and the currently selected input clock source are routed into and through a clock matrix. The user is able to select which PLL output and clock source is routed to which output bank via the SRCx bits ($0 \times 34,0 \times 35$). Each output bank has its own set of SRC bits. Refer to the RAM table for more information. Note that OUT1 will be based off the reference clock and the only output bank toggling under the default RAM bit settings.

Outputs 1,2 and 3 are 3.3 V LVTTL. Outputs banks 4 and 5 can be 3.3 V LVTTL, LVPECL or LVDS. The LVDS and LVPECL selection is determined by the LVLx bits ($0 \times 54,0 \times 58$). Each output bank has individual slew-rate control (SLEWx bits). Each output can be individually inverted (INVx bits); when using LVPECL or LVDS modes, one of the outputs in each LVPECL/LVDS pair should be inverted. All output banks except OUT1 have a programmable 10-bit post-divider (Qxbits) with two selectable divide configurations via the ODIVx bits.

There are four settings for the programmable slew rate, $0.7 \mathrm{~V} / \mathrm{ns}, 1.25 \mathrm{~V} / \mathrm{ns}, 2 \mathrm{~V} / \mathrm{ns}$, and $2.75 \mathrm{~V} / \mathrm{ns}$; this only applies to the 3.3 V LVTTL outputs. The differential outputs are not slew rate programmable in LVPECL or LVDS modes. SLEW4 and/or SLEW5 must be setto $2.75 \mathrm{~V} / \mathrm{ns}$ for stable output operation . For LVTTL output frequency rates higher than 100 MHz , a slew rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater should be selected. The post-dividers can be disabled using the PMx bit, which is described in the PRE-SCALER, FEEDBACK-DIVIDER, AND POST-DIVIDER section. Each output can also be enabled/disabled, which is described in the 'SHUTDOWN/SUSPEND/ENABLE of OUTPUTS' section. Refer to the RAM table for all binary settings.

HIGH LEVEL BLOCK DIAGRAM FOR CONFIGURATION SCHEME

NOTE: Diagram does not represent actual number of die on chip.

PROGRAMMING THE DEVICE

$I^{2} \mathrm{C}$ and JTAG may be used to program the 5 V 9885 T . The $I^{2} \mathrm{C} / \mathrm{JTAG}$ pin selects the ${ }^{2} \mathrm{C}$ when HIGH and JTAG when LOW. Note that the TRST pin needs to be LOW for ${ }^{2} \mathrm{C}$ mode.

Hardwired Parameters for the IDT5V9885T

JTAG identification number=32'b0000_0000001110101100_00000110011_1
Device (slave) address = 7'b1101010
ID Byte for the 5V9885T = 8'b00010000

$I^{2} \mathrm{C}$ PROGRAMMING

The 5V9885T is programmed through an $I^{2} \mathrm{C}$-Bus serial interface, and is an $I^{2} \mathrm{C}$ slave device. The read and write transfer formats are supported. The first byte of data after a write frame to the correct slave address is interpreted as the register address; this address auto-increments after each byte written or read. The frame formats are shown below.

Figure 1: Framing

Each frame starts with a "Start Condition" and ends with an "End Condition". These are both generated by the Master device.

The first byte transmitted by the Master is the Slave Address followed by the R/W bit. The Slave acknowledges by sending a "1" bit.

Figure 2: First Byte Transmittetd on $I^{2} \mathrm{C}$ Bus

EXTERNAL I ${ }^{2}$ C INTERFACE CONDITION

KEY:
\square From Master to Slave
From Master to Slave, but can be omitted iffollowed by the correct sequence
Normally data transfer is terminated by a STOP condition generated by the Master. However, ifthe Master still wishes to communicate on the bus, it can generate a repeated START condition, and address another Slave address without first generating a STOP condition.
From Slave to Master

SYMBOLS:

ACK - Acknowledge (SDA LOW)
NACK - Not Acknowledge (SDA HIGH)
Sr -Repeated Start Condition
S - START Condition
P-STOP Condition

PROGWRITE

S	Address	R/W	ACK	Command Code	ACK	Register	ACK	Data	ACK	P
	7-bits	0	1-bit	8-bits: $x x x x x x 00$	1-bit	8-bits	1-bit	8-bits	1-bit	

Figure 3: Progwrite Command Frame
Writes can continue as long as a Stop condition is not sent and each byte will increment the register address.

PROGREAD

Note: If the expected read command is not from the next higher register to the previous read or write command, then set a known "read" register address prior to a read operation by issuing the following command:

S	Address	R/W	ACK	Command Code	ACK	Register	ACK
	7-bits	0	1-bit	8-bits: xxxxxx00	1-bit	8-bits	1-bit

Figure 4a: Prior to Progread Command Set Register Address
The user can ignore the STOP condition above and use a repeated START condition instead, straight after the slave acknowledgement bit(i.e., followed by the Progread command):

Sr	Address	R/W	ACK	ID Byte	ACK	Data_1	ACK	Data_2	ACK	Data_last	NACK	P
	7-bits	1	1-bit	8 bits	1-bit	8-bits	1-bit	8-bits	1-bit	8-bits	1-bit	

Figure 4b: Progread Command Frame
Note:Figure 4b above by itself is the Progread command format. The ID byte for the 5V9885T is 10hex. Each byte recieved increments the register address.

PROGSAVE

S	Address	R/W	ACK	Command Code	ACK	P
	7-bits	0	1-bit	8-bits:xxxxxx01	1-bit	

NOTE:
PROGWRITE is for writing to the 5V9885T registers.
PROGREAD is for reading the 5V9885T registers.
PROGSAVE is for saving all the contents of the 5V9885T registers to the EEPROM PROGRESTORE is for loading the entire EEPROM contents to the 5V9885T registers.

PROGRESTORE

S	Address	R/W	ACK	Command Code	ACK	P
	7-bits	0	1-bit	8-bits:xxxxxx10	1-bit	

JTAG INTERFACE

In addition to the IEEE 1149.1 instructions EXTEST, SAMPLE/PRELOAD, CLAMP, HIGH-Z and BYPASS, the 5V9885T allows access to internal programmingregisters usingthe REGADDR(setregisteraddress), REGDATAR (read register) and REGDATW (write register instructions. Data is always accessed by byte, and the register address increments aftereach read orwite. The full instruction setfollows. The IDT5V9885T will be updating the registers during programming.
The JTAG TAP controller can be reset in one of four ways:

1) Power up in JTAG mode
2) Powerupin 12 C mode and then go into JTAG mode, orgo out of and back into JTAG mode with the ${ }^{2} C / J T A G$ pin
3) Apply TRST while in JTAG mode
4) Apply five rising edges of TCK with TMS high while in JTAG mode

JTAG INSTRUCTION REGISTER DESCRIPTION

IR (3)	IR (2)	IR (1)	$\mathrm{IR}(0)$	Instructions
0	0	0	0	EXTEST ${ }^{(1)}$
0	0	0	1	SAMPLE/PRELOAD ${ }^{(1)}$
0	0	1	0	IDCODE ${ }^{(1)}$
0	0	1	1	REGADDR ${ }^{(2)}$
0	1	0	0	REGDATAW / PROGWRITE ${ }^{(3)}$
0	1	0	1	REGDATAR / PROGREAD ${ }^{(4)}$
0	1	1	0	PROGSAVE ${ }^{(5)}$
0	1	1	1	PROGRESTORE ${ }^{(6)}$
1	0	0	0	CLAMP ${ }^{(1)}$
1	0	0	1	HIGHZ ${ }^{(1,7)}$
1	1	1	1	BYPASS ${ }^{(1)}$

NOTES:

1. IEEE 1149.1 definition
2. REGADDR is for setting a specific 5 V 9885 T register address.
3. REGDATAW/PROGWRITE is for writing to the 5V9885T registers
4. REGDATAR/PROGREAD is for reading the 5V9885T registers.
5. PROGSAVE is for saving all the contents of the 5V9885T registers to the EEPROM.
6. PROGRESTORE is for loading the entire EEPROM contents to the 5V9885T registers
7. The OEMs bits for OUT1-6 must be set for tri-state when using the HIGHZ instruction

EEPROMINTERFACE

The IDT5V9885T can also store its configuration in an internal EEPROM. The contents of the device's internal programming registers can be saved to the EEPROM by issuing a save instruction (ProgSave) and can be loaded back to the internal programming registers by yssuing a restore instruction (ProgRestore).
Toinitiate a save orrestore using ${ }^{2} \mathrm{C}$, only two bytes are transferred. The Device Address is issued with the read/write bitsetto "0", followed by the appropriate command code. The save or restore instruction executes after the STOP condition is issued by the Master, during which time the IDT5V9885T will notgenerate Acknowledge bits. The IDT5V9885T will acknowledge the instructions afterithas completed execution ofthem. During that 1 ime, the ${ }^{2} \mathrm{C}$ bus should be interpreted as busy by all other users of the bus.
Using JTAG, the ProgSave and ProgRestore instructions selectsthe BYPASS registerpathforshifting the datafrom TDIto TDO duringthedataregisterscanning. During the execution of aProgSave or ProgRestore instruction, the IDT5V9885T will notacceptanew programming instruction (read, write, save, or restore). All non-programming JTAG instructions will function properly, but the user should waituntil the save or restore is complete before issuing a new programming instruction. Ifanew programming instruction is issued before the save or restore completes, the new instruction is ignored, and the BYPASS register path remains in effect for shifting data from TDI to TDO during data register scanning.
The time it takes for the save (TsAVE) and restore (Trestore) instructions to complete is:
Tsave $=100 \mathrm{~ms}$ max, Trestore $=10 \mathrm{~ms}$ max

In order for the save and restore instructions to function properly, the IDT5V9885T mustnotbe in shutdown mode (SHUTDOWN pin asserted). In theevent of an interrupt of some sort such as a power down of the part in the middle of a save or restore operation, the contents to or from the EEPROM will be partially loaded, and a CRC error will be generated. The CERR bit (0x81) will be asserted to indicate that an error has occurred. The LOSS_LOCK signal will also be asserted.
On power-up of the IDT5V9885T, an automatic restore is performed to load the EEPROM contents into the internal programming registers. The auto-restore will not function properly if the device is in shutdown mode (SHUTDOWN pin asserted). The IDT5V9885T will be ready to accept a programming instruction once it acknowledges its 7 -bit ${ }^{2} \mathrm{C}$ address.

Standard JTAG Timing
NOTE:
t1 = ttclklow
t2 $=$ ttcLLKHIGH
t3 $=$ ttcllefall
t4 = ttclLkRISE
t5 $=$ trst (reset pulse width)
t6 $=$ tRSR (reset recovery)

JTAG

AC ELECTRICALCHARACTERISTICS

Symbol	Parameter	Min.	Max.	Units
trclk	JTAG Clock Input Period	100	-	ns
trclkhigh	JTAG Clock HIGH	40	-	ns
trCLKLOW	JTAG Clock Low	40	-	ns
trclkRISE	JTAG Clock Rise Time	-	$5^{(1)}$	ns
trclkFALL	JTAG Clock Fall Time	-	$5^{(1)}$	ns
trst	JTAGReset	50	-	ns
tRSR	JTAG Reset Recovery	50	-	ns

NOTE:

1. Guaranteed by design.

SYSTEM INTERFACE PARAMETERS

Symbol	Parameter	Min.	Max.	Units
too	Data Output ${ }^{(1)}$	-	20	ns
tDoH	Data OutputHold ${ }^{(1)}$	0	-	ns
tos	Data Input, trISE $=3 \mathrm{~ns}$	10	-	ns
tDH	Data Input, traLL $=3 \mathrm{~ns}$	10	-	ns

NOTE:

1. 50 pF loading on external output signals.

I²C BUS DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{H}	Input HIGH Level		$0.7^{*} \mathrm{VDD}^{2}$			V
VIL	InputLOWLevel				$0.3^{*} \mathrm{VDD}$	V
VHYs	Hysteresis of Inputs		$0.05^{*} \mathrm{VDD}$			V
IIN	InputLeakageCurrent				± 1.0	$\mu \mathrm{~A}$
VoL	OutputLOW Voltage	loL $=3 \mathrm{~mA}$			0.4	V

I²C BUS AC CHARACTERISTICS FOR STANDARD MODE

Symbol	Parameter	Min	Typ	Max	Unit
Fsclk	Serial Clock Frequency (SCLK)	0		100	KHz
tBuF	Bus free time between STOP and START	4.7			$\mu \mathrm{s}$
tsu:Start	Setup Time, START	4.7			$\mu \mathrm{s}$
thd:Start	Hold Time, START	4			$\mu \mathrm{s}$
tsu:DATA	Setup Time, data input (SDAT)	250			ns
tho:DATA	Hold Time, data input (SDAT) ${ }^{(1)}$	0			$\mu \mathrm{s}$
tov	Output data valid from clock			3.45	$\mu \mathrm{s}$
Св	Capacitive Load for Each Bus Line			400	pF
tR	Rise Time, data and clock (SDAT, SCLK)			1000	ns
t	Fall Time, data and clock (SDAT, SCLK)			300	ns
tHIGH	HIGH Time, clock (SCLK)	4			$\mu \mathrm{S}$
tow	LOW Time, clock (SCLK)	4.7			$\mu \mathrm{s}$
tsu:STop	Setup Time, STOP	4			$\mu \mathrm{s}$

NOTE:

1. A device must internally provide a hold time of at least 300 ns for the SDAT signal (referred to the VIHMIN of the SCLK signal) to bridge the undefined region of the falling edge of SCLK.

$I^{2} \mathrm{C}$ BUS AC CHARACTERISTICS FOR FAST MODE

Symbol	Parameter	Min	Typ	Max	Unit
Fsclk	Serial Clock Frequency (SCLK)	0		400	KHz
tBuF	Bus free time between STOP and START	1.3			$\mu \mathrm{s}$
tsu:Start	Setup Time, START	0.6			$\mu \mathrm{s}$
thd:Start	Hold Time, START	0.6			$\mu \mathrm{s}$
tsu:DATA	Setup Time, data input(SDAT)	100			ns
thd:DATA	Hold Time, data input (SDAT) ${ }^{(1)}$	0			$\mu \mathrm{s}$
tov	Output data valid from clock			0.9	$\mu \mathrm{s}$
Св	Capacitive Load for Each Bus Line			400	pF
tR	Rise Time, data and clock (SDAT, SCLK)	$20+0.1$ * $\mathrm{C}_{\text {B }}$		300	ns
F	Fall Time, data and clock (SDAT, SCLK)	$20+0.1$ * CB		300	ns
tHIGH	HIGH Time, clock (SCLK)	0.6			$\mu \mathrm{s}$
tow	LOW Time, clock (SCLK)	1.3			$\mu \mathrm{s}$
tsu:Stop	Setup Time, STOP	0.6			$\mu \mathrm{s}$

NOTE:

1. A device must internally provide a hold time of at least 300 ns for the SDAT signal (referred to the Vihmin of the SCLK signal) to bridge the undefined region of the falling edge of SCLK.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
$V_{D D}$	Internal Power Supply Voltage	-0.5 to +4.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.5 to +4.6	V
$\mathrm{~V}_{0}$	Output Voltage ${ }^{(2)}$	-0.5 to $\mathrm{VDD}_{\mathrm{DD}}+0.5$	V
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Not to exceed 4.6V.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{ViN}=0 \mathrm{~V}\right){ }^{(\mathbf{1})}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
CIN	Input Capacitance	-	4	-	pF

Crystal Specifications

XTAL_FREQ	Crystal Frequency	8	-	50	MHz
XTAL_MIN	Minimum Crystal Load Capacitance	-	3.5	-	pF
XTAL_MAX	Maximum Crystal Load Capacitance	-	35.4	-	pF
	Crystal Load Capacitance Resolution	-	0.125	-	
XTAL_VPP	Voltage Swing (peak-to-peak, nominal)	-	2.3	-	V

NOTE:

1. Capacitance levels characterized but not tested.

RECOMMENDED OPERATING CONDITIONS

Symbol	Description	Min.	Typ.	Max.	Unit
VDD	Power Supply Voltage forLVTTL	3	3.3	3.6	V
	Power Supply Voltage for LVDS/LVPECL	3.135	3.3	3.465	
TA	OperatingTemperature,Ambient	-40	-	+85	${ }^{\circ} \mathrm{C}$
CLOAD_OUT	Maximum Load Capacitance(LVTTLonly)	-	-	15	pF
FIN	External ReferenceCrystal	8	-	50	MHz
	External ReferenceClock, Industrial	1	-	400	
tPU	Power-uptime forall VDDstoreach minimum specified voltage (powerrampsmustbemonotonic)	0.05	-	5	ms

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
VінH	Input HIGH Voltage Level ${ }^{(1)}$	$1^{2} \mathrm{C} / \sqrt{\text { TAG }} 3$-Level Input		VDD - 0.4	-	-	V
Vimm	Input MID Voltage Level ${ }^{(1)}$	$1^{2} \mathrm{C} / \overline{\text { TAG }} 3$-Level Input		Vdo/2-0.2	-	$\mathrm{V} \mathrm{d} / 2+0.2$	V
VILL	InputLOW Voltage Level ${ }^{(1)}$	$1^{2} \mathrm{C} / \sqrt{\text { TAG }} 3$-Level Input		-	-	0.4	V
13	3-Level Input DC Current	$\mathrm{VIN}=\mathrm{VdD}$	HIGH Level	-	-	200	$\mu \mathrm{A}$
		$\mathrm{VIN}=\mathrm{VDD}^{\text {/ }}$	MID Level	-50	-	+50	
		VIN = GND	LOW Level	-200	-	-	
IDD	Total Power Supply Current (3.3V Supply, Vdd)	2 outputs @166MHz; 4 outputs @ 83MHz		-	120	-	mA
		2 outputs @20MHz; 4 outputs @ 40MHz		-	40	-	
IdDS	Total Power Supply Current in ShutdownMode ${ }^{(2)}$	Global Shutdown Mode (PLLs, dividers, outputs, etc. powered down)		-	2	-	mA

NOTES:

1. These inputs are normally wired to $\operatorname{VDD}, G N D$, or left floating. If these inputs are switched dynamically after powerup, the function and timing of the outputs may be glitched, and the PLL may require additional tAQ time before all datasheet limits are achieved.
2. Dividers must reload reprogrammed values via power-on reset or terminal count reload in order to ensure low-power mode.

DC ELECTRICAL CHARACTERISTICS FOR 3.3V LVTTL(1)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
IoH	Output HIGH Current	$\mathrm{VOH}=\mathrm{VDD}-0.5, \mathrm{VdD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	12	24	-	mA
IoL	OutputLOWCurrent	$\mathrm{VoL}=0.5 \mathrm{~V}, \mathrm{VdD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	12	24	-	mA
VIH	Input Voltage HIGH		2	-	-	V
VIL	InputVoltageLOW		-	-	0.8	V
IH	Input HIGH Current ${ }^{(2)}$	$\mathrm{VIN}^{\text {a }}$ = V_{dD}	-	-	10	$\mu \mathrm{A}$
IIL	InputLOW Current	VIN $=0 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
IozD	OutputLeakage Current	3-stateoutputs	-	-	10	$\mu \mathrm{A}$

NOTES:

1. See RECOMMENDED OPERATING RANGE table.
2. Ilt specification does not apply to inputs with internal pull-down.

POWER SUPPLY CHARACTERISTICS FOR LVTTL OUTPUTS

Symbol	Parameter	Test Conditions	Typ.	Max	Unit
IDDQ	Quiescent Vod Power Supply Current	REF = LOW Outputs enabled, All outputs unloaded	6	12	mA
IdDD	Dynamic Vod Power Supply CurrentperOutput	$V_{D D}=$ Max., $\mathrm{CL}=0 \mathrm{pF}$	40	60	$\mu \mathrm{A} / \mathrm{MHz}$
Itot	Total Power Vod Supply Current	Freference clock $=33 \mathrm{MHz}$, CL $=15 \mathrm{pf}$	26	40	mA
		Freference clock $=133 \mathrm{MHz}, \mathrm{CL}=15 \mathrm{pf}$	80	120	
		Freference clock $=200 \mathrm{MHz}$, CL $=15 \mathrm{pf}$	112	170	

DC ELECTRICAL CHARACTERISTICS FOR LVDS

Symbol	Parameter	Min.	Typ.	Max	Unit
Vот $(+)$	Differential OutputVoltage forthe TRUEbinary state	247	-	454	mV
Vот $(-)$	Differential OutputVoltageforthe FALSEbinary state	-247	-	-454	mV
Δ Voт	Change in VorbetweenComplimentary OutputStates	-	-	50	mV
Vos	OutputCommonModeVoltage(OffsetVoltage)	1.125	1.2	1.375	V
Δ Vos	Change in VosbetweenComplimentary OutputStates	-	-	50	mV
los	Outputs Short Circuit Current, VouT+ or Vout- = OV or Vdd	-	9	24	mA
losd	Differential Outputs ShortCircuitCurrent, Vout+ = Vout-	-	6	12	mA

POWER SUPPLY CHARACTERISTICS FOR LVDS OUTPUTS(1)

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent Vdo Power Supply Current	REF = LOW Outputsenabled, All outputs unloaded	68	90	mA
Iddo	Dynamic Vod Power Supply Currentper Output	Vdd $=$ Max., $\mathrm{CL}=0 \mathrm{pF}$	30	45	$\mu \mathrm{A} / \mathrm{MHz}$
Ітот	Total Power Vod Supply Current	Freference clock $=100 \mathrm{MHz}$, CL $=5 \mathrm{pf}$	86	130	mA
		Freference clock $=200 \mathrm{MHz}$, CL $=5 \mathrm{pf}$	100	150	
		Freference clock $=400 \mathrm{MHz}$, Cl $=5 \mathrm{pf}$	122	190	

NOTES:

1. Output banks 4 and 5 are toggling. Other output banks are powered down.
2. The termination resistors are excluded from these measurements.

DC ELECTRICAL CHARACTERISTICS FOR LVPECL

Symbol	Parameter	Min.	Typ.	Max	Unit
Voн	Output Voltage HIGH, terminated through 50 ${ }^{\text {atied to Vdo - } 2 \mathrm{~V}}$	VdD-1.2	-	VdD - 0.9	V
VoL	Output Voltage LOW, terminated through 50 2 tied to VDD-2V	VdD-1.95	-	VdD-1.61	V
Vswing	Peak to Peak Output Voltage Swing	0.55	-	0.93	V

POWER SUPPLY CHARACTERISTICS FOR LVPECL OUTPUTS(1)

Symbol	Parameter	Test Conditions ${ }^{(2)}$	Typ.	Max	Unit
IDDQ	Quiescent Vdo Power Supply Current	REF = LOW Outputsenabled, All outputs unloaded	86	110	mA
IDDD	Dynamic Vdo Power Supply Currentper Output	Vdd = Max., CL = OpF	35	50	$\mu \mathrm{A} / \mathrm{MHz}$
Ітот	Total Power Vdo Supply Current	Freference clock $=100 \mathrm{MHz}$, CL $=5 \mathrm{pf}$	120	180	mA
		Freference clock $=200 \mathrm{MHz}$, CL $=5 \mathrm{pf}$	130	190	
		Freference clock $=400 \mathrm{MHz}$, Cl $=5 \mathrm{pf}$	140	210	

NOTES:

1. Output banks 4 and 5 are toggling. Other output banks are powered down.
2. The termination resistors are excluded from these measurements.

AC TIMING ELECTRICAL CHARACTERISTICS

(SPREAD SPECTRUM GENERATION = OFF)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max	Unit
fin	InputFrequency	InputFrequency Limit		$1^{(1)}$	-	400	MHz
1/t1	OutputFrequency	Single Ended Clock output limit(LVTTL)		0.0049	-	200	MHz
		Differential Clock outputlimit(LVPECL/LVDS)		0.0049	-	500	
fveo	VCO Frequency	VCO operating Frequency Range		10	-	1200	MHz
fppd	PFD Frequency	PFDoperating Frequency Range		$0.4{ }^{(1)}$	-	400	MHz
fiw	Loop Bandwidth	Based on loop filter resistor and capacitor values		0.03	-	40	MHz
12	Input Duty Cycle	Duty Cycle for Input		40	-	60	\%
13	Output Duty Cycle	Measured at Vdo/2, Fout $\leq 200 \mathrm{MHz}$		45	-	55	\%
		Measured at Vdo/2, Fout > 200MHz		40	-	60	
t4 $4^{(2)}$	$\begin{aligned} & \text { Slew Rate } \\ & \text { SLEWx(bits) }=00 \\ & \hline \end{aligned}$	Single-Ended Output clock rise and fall time, 20% to 80% of VDD (Output Load $=15 \mathrm{pf}$)		-	2.75	-	V/ns
	Slew Rate $\text { SLEWx(bits) }=01$	Single-Ended Outputclock rise and fall time, 20% to 80% of VDD (Output Load $=15 \mathrm{pf}$)		-	2	-	
	Slew Rate $\text { SLEW } \times \text { (bits) }=10$	Single-Ended Outputclock rise and fall time, 20% to 80% of VDD (Output Load $=15 \mathrm{pf}$)		-	1.25	-	
	Slew Rate $\text { SLEWx(bits) = } 11$	Single-Ended Outputclock rise and fall time, 20% to 80% of VdD (Output Load $=15 \mathrm{pf}$)		-	0.75	-	
45	Rise Times	LVDS, 20\% to 80\%		-	850	-	ps
	Fall Times			-	850	-	
	Rise Times	LVPECL, 20\% to 80\%		-	500	-	
	Fall Times			-	500	-	
16	Outputthree-state Timing	Time for outputto enter orleave three-state mode after SHUTDOWN/OE switches		-	-	$\begin{gathered} \hline 150+ \\ \text { 1/Foutx } \end{gathered}$	ns
77	Clock Jitter ${ }^{(3,7)}$	Peak-to-peak periodjitter, CLK outputs measured at VDd/2	fpfo > 20MHz	-	-	150	ps
			fpFd < 20MHz	-	200	-	
18	OutputSkew	Skew between outputto output on the same bank (bank 4 and bank 5 only ${ }^{4,5)}$		-	-	150	ps
t9	Lock Time	PLL Lock Time from Power-up ${ }^{(6)}$		-	10	20	ms
t10	Lock time ${ }^{(8)}$	PLL Locktime from shutdown mode		-	20	100	$\mu \mathrm{s}$

NOTES:

1. Practical lower input frequency is determined by loop filter settings.
2. A slew rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater should be selected for output frequencies of 100 MHz and higher.
3. Input frequency is the same as the output with all output banks running at the same frequency.
4. Skew measured between all in-phase outputs in the same bank.
5. Skew measured between the cross points of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device.
6. Includes loading the configuration bits from EEPROM to PLL registers. It does not include EEPROM programming/write time.
7. Guaranteed by design but not production tested. Actual jitter performance may vary depending on the configuration.
8. Actual PLL lock time depends on the loop configuration.

SPREAD SPECTRUM GENERATION SPECIFICATIONS

Symbol	Parameter	Description	Min.	Typ.	Max	Unit
fin	InputFrequency	InputFrequencyLimit	$1^{(1)}$	-	400	MHz
fmod	Mod Freq	ModulationFrequency	-	33	-	kHz
fSPREAD	SpreadValue	Amountof SpreadValue(Programmable)-DownSpread	$-0.5,-1,-2.5,-3.5,-4$			$\%$ fout
		AmountofSpread Value(Programmable)-CenterSpread	-2.0 to +2.0			

NOTE:

1. Practical lower input frequency is determined by loop filter settings.

TEST CIRCUITS AND CONDITIONS ${ }^{(1)}$

NOTE:

1. All VDD pins must be tied together.

OTHER TERMINATION SCHEME (BLOCK DIAGRAM)

LVTTL: -15pF for each output

LVDS: - 100 Ω between differential outputs with 5pF

LVPECL: - 50Ω to VDD-2V for each output with 5pF

RAM (PROGRAMMING REGISTER) TABLES

00	

Nol7:01_CONFIGO
Nol: $01 / \mathrm{CONFIG1}$
NO17:01_CONFIG2

LLo multiplier setting
CONFIG0 will be selected if $\mathrm{GIN} \times$ are dis abled and operating in MFC mode
No[11:0]_CONFIGx - Part of PLLOM Integer Feedback Divider Values (see equation below) - For 4 Contigurations (Default value is 0°) AOB:O_CONFIGX - Part of PLLO M Integer Feedback Divider Values (see equation below) - For 4 Contigurations (Default value is ' 0 '): SSC_OFFSETO[5:0]-Spread Spectrum Fractional Multiplier Offset Value. See Spread Spectrum Settings in register address range
Total Mutiplier Value $\mathrm{MO}=2^{*} \mathrm{NO}[11: 0]+\mathrm{AO}+1+\mathrm{SS}$ OFFSETO $\cdot 1 / 6$
When AO[3:0] $=0$ and spread spectrum disabled, $M 0=2{ }^{*} \mathrm{NO}[11: 0]$;
rum disabled, $\mathrm{MO}=2 \cdot \mathrm{NO}[11 \cdot 10+\mathrm{AO}+1$
Note: $A<N-1$, i.e. valid M values are $2,4,6,8,9,10,11,12,13, \ldots, 4095$ assuming within $f P F D$ and $f V C O$ spec);
NOI11:8_CONFIG1

00
00
00
40

\square
SP

0×18	0	0	0	0				0	00		A0[3:0
0x1C	0	0	0	0				0	00	SP	S

-

RAM (PROGRAMMING REGISTER) TABLES

RAM (PROGRAMMING REGISTER) TABLES

	BT\%									вт*					
ADDR	7	6	5	4	3	2	1	0	Register Hex Value	7 7	5 4	3	2	10	description
0x40	0	0	0	0	0	0	0	0	00	D27:01-CONFIGO					PLL2INPUT DIVIIDER D2 SETING
0x41	0	0	0	0	0	0	0	0	00	D27:01_CONFIG1					
0x42	0	0	0	0	0	0	0	0	00	D27:01CONFIG2					
0x43	0	0	0	0	0	0	0	0	00	D27:01CONFIG3					
0x44	0	0	0	0	0	0	0	0	00	N27:01CONFIG0					PLL Multiplier seting Total Multiplier Value
0x45	0	0	0	0	0	0	0	0	00	N2P7:0LCONFIG1					
0x46	0	0	0	0	0	0	0	0	00	N27:01CONFIG2					
0x47	0	0	0	0	0	0	0	0	00	N27:01CONFIG3					
0x48	0	0	0	0	0	0	0	0	00	N2[11:8]CONFIGO					
0x49	0	0	0	0	0	0	0	0	00	N2[1: 8]CONFIG1					
0x4A	0	0	0	0	0	0	0	0	${ }_{0}$	N2[11:8]CONFIG2					
0x4B	0	0	0	0	0	0	0	0	00	N2[11:8]CONFIG3					
0xac	0	0	0	0	0	0	0	0	00	оЕм21:0]	SLEW2[1:0]	INV2			INVx PMx OEMx Qx SLEWx Configuring Output OUT2 INV2=Output Inversion for OUT2 ("0"= Non-Invert (Default), "1"=Invert); SLEW2=Slew Rate Settings for OUT2 output ("00" $=2.75 \mathrm{~V} / \mathrm{ns}$ (Default), " 01 " $=2 \mathrm{~V} / \mathrm{ns}, " 10 "=1.25 \mathrm{~V} / \mathrm{ns}, " 11 "=0.7 \mathrm{~V} / \mathrm{ns}$); INV5_1=Output Inversion for/OUT5 ("0"= Invert, "1"=Non-Invert (Default)); INV5_0=Output Inversion for OUT5 ("0"= Invert, "1"=Non-Invert (Default)); SLEW5=Slew rate settings for OUT5 output (" 00 " $=2.75 \mathrm{~V} / \mathrm{ns}$ (Default), " 01 " $=2 \mathrm{~V} / \mathrm{ns}$, " $10 "=1.25 \mathrm{~V} / \mathrm{ns}$, " $111 "=0.7 \mathrm{~V} / \mathrm{ns}$); OEM5= Output Enable Mode for OUT5 output, when used with OE5 bit and SHUTDOWN/OE pin ("0x" = Tri-state (Default), "10"=Park Low, "11"=Park High); Q5[x:x]=Outp er "Q5" Values (Default value is '2') - Support 2 output configurations when used in MFC mode; PM5[x:X]= Divide Mode, ("00"=Divider Disabled;"01"=Divide by ' 1 ';"10"=Divide by 2; "11"=Divide by (Q+2) (Default)); (Note: To enable OUT5, PM5 register bit values for both CONFIG0 and CONFIG1 configurations must be non-zero.)
0x4D	1	0	1	1	1	0	1	1	вв	Q21: 0_CONFIG1	PM2[1:0]_CONFIG1	Q2[1:0]CONFIG0		PM2[1:0]_CONFIGO	
0x4E	0	0	0	0	0	0	0	0	00	Q2[9:2]_CONFIG0					
0x4F	0	0	0	0	0	0	0	0	00	Q29:2]_CONFIG1					
0x50	0	0	0	0	0	0	0	0	00	оемз[1:0]	SLEW33[:0]	INv3			Configuring Output OUT3 INV3=Output Inversion for OUT3 ("0"= Non-Invert (Default), "1"=Invert); SLEW3=Slew Rate Settings for OUT3 output (" 00 " $=2.75 \mathrm{~V} / \mathrm{ns}$ (Default), " 01 " $=2 \mathrm{~V} / \mathrm{ns}, ~ " 10 "=1.25 \mathrm{~V} / \mathrm{ns}, " 11 "=0.7 \mathrm{~V} / \mathrm{ns}$);
0x51	1	0	1	1	1	0	1	1	вв	Q331:0_CONFIG1	PM3[1:0]_CONFIG1	Q3[1:0]_CONFIG0		Pm31:0]_CONFIGO	
0x52	0	0	0	0	0	0	0	0	00	Q319:2]_ConFlGo					
0x53	0	0	0	0	0	0	0	0	00	Q339:2]_CONFIG1					
0x54	0	0	0	0	1	1	0	0	oc	Oem410:0]	SLEW4[1:0]	INV4_1	INV4_0	LVLL[\|1:0]	Configuring Output OUT4 INV4_1=Output Inversion for /OUT4 ("0"= Invert , "1"=Non-Invert (Default)); INV4_0=Output Inversion for OUT4 ("0"= Invert, " 1 " $=$ Non-Invert (Default));
0x55	1	0	1	1	1	0	1	1	вв	Q411:0_ConFla	PM4[1:0]_CONFIG1	Q4[1:0]_CONFIG0		PM411:0_CONFIGO	
0×56	0	0	0	0	0	0	0	0	00	Q49:2]_Configo					
0x57	0	0	0	0	0	0	0	0	${ }_{0} 0$	Q49:2]_ConFiG1					
0x58	0	0	0	0	1	1	0	0	oc	OEm5[1:0]	SLEW5[1:0]	INv5_1	INV5_0	LVLL[11:0]	Configuring Output OUT5 INV5_1=Output Inversion for/OUT5 ("0"= Invert, "1" 1 =Non-Invert (Default); (NV5 $0=$ Output Inversion for $04 T 5$ " 0 " $=$ Invert " $4 "=$ Non-Invert (Default) $)$
0x59	1	0	1	1	1	0	1	1	вв	a551:01_CONFIG1	PM5[1:0]_CONFIG1	as[1:0_Confligo		PM51: 0 _CONFIG0	
0x5A	0	0	0	0	0	0	0	0	00	a59:2]_CONFIG0					When using LVPECL or LVDS outputs, SLEW5 must be set to '00'.
0x5B	0	0	0	0	0	0	0	0	00	Q59:2]_CONFIG1					
0x5c	0	0	0	0	0	0	1	1	${ }^{3}$	OEmbl1:0]	SLEW6[1:0]	INv6			
0x5D	1	0	1	1	1	0	1	1	вв	Q611:01-CONFIG1	PM6[1:0]_CONFIG1	Q6[1:0]_ConFIGO		PM61:0]_CONFIG0	
0x5E	0	0	0	0	0	0	0	0	00	Q69:2]_Configo					
0x5F	0	0	0	0	0	0	0	0	00	Q699:2]_Conflg 1					

RAM (PROGRAMMING REGISTER) TABLES

Package Outline and Package Dimensions（32－pin TQFP）

$\begin{aligned} & S \\ & Y \\ & H \\ & H \\ & 0 \\ & 0 \end{aligned}$	JEDEC VARIATION			NdT
	咟A			
	$\mathrm{M} \mid \mathbb{N}$	NOM	WUSX	
A	－	－	1．6］	
A1	． 05	． 10	． 15	
A2	1.35	1.40	1.45	
D	9.00 日SC			4
01	7.00 BSC			5，2
E	9.00 日SC			4
E1	7.00 日SC			5，2
N	32			
e	．BD BSC			
b	． 30	． 37	． 45	7
b1	． 30	． 35	． 40	
ccc	－	－	． 10	
ddd	－	－	． 20	

RECOMMENDED LANDING PATTERN, 32-pin TQFP

	$\mathrm{M} 1 \mathbb{N}$	MAX
P	9.80	10.00
P 1	6.80	7.00
P 2	5.60 BSC	
X	.40	.60
e	.80 BSC	
N	32	

RECOMMENDED LANDING PATTERN, 28-pin VFQFPN

NL 28 pin

NOTE: All dimensions are in millimeters.

ORDERING INFORMATION

Part Number	Shipping Packaging	Package	Temperature
5V9885TPFGI	Tubes	32-pin TQFP	-40 to $+85^{\circ} \mathrm{C}$
5V9885TPFGI8	Tape and Reel	32-pin TQFP	-40 to $+85^{\circ} \mathrm{C}$
5V9885TNLGI	Tubes	28-pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$
5V9885TNLGI8	Tape and Reel	28 -pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$

MARKING DIAGRAM (5V9885TPFGI)

IDT 5V9885T PFGI YMNW\$

MARKING DIAGRAM (5V9885TNLGI)

\square

NOTES:

1. 'YYWW' is the date code.
2. '\$' is the assembly mark code.
3. ' G ' denotes RoHS compliant package.
4. 'I' denotes industrial temperature range.
5. Bottom marking: country of origin.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1

