

4-OUTPUT FANOUT BUFFER FOR PCIE GEN1, 2, 3, 4

6V31024

DATASHEET

Description

The 6V31024 is a 4-output lower-power differential buffer. Each output has its own OE# pin. It has a maximum operating frequency of 150MHz.

Recommended Application

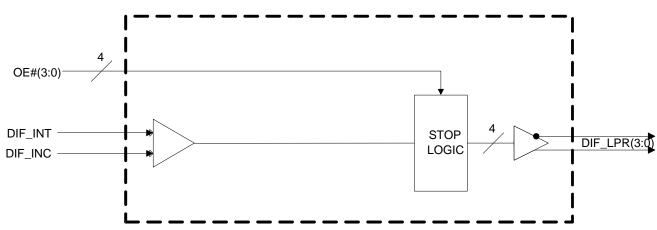
PCI-Express Gen1, 2, 3 and 4 fanout buffer

Output Features

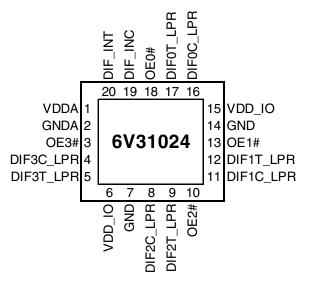
- 4 low power differential output pairs
- Individual OE# control of each output pair

Power Groups

Features/Benefits

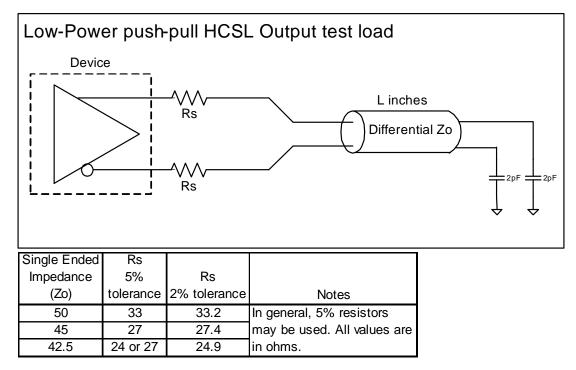

- Low power differential outputs for PCI-Express
- Power-down mode when all OE# are high
- 4 x 4 mm 20-VFQFPN package

Key Specifications


- Output cycle-cycle jitter < 15ps additive
- Output to Output skew: < 50ps

Pin N	Number	Description
VDD	GND	Description
6,15	7,14	VDD_IO for DIF(3:0)
1	2	3.3V Analog VDD & GND

Block Diagram



Pin Configuration

20-VFQFPN

Test Loads

L = 5 inches

Pin Descriptions

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDA	PWR	3.3V Power for the Analog Core
2	GNDA	GND	Ground for the Analog Core
3	OE3#	IN	Output Enable for DIF3 output. Control is as follows: 0 = enabled, 1 = Low-Low
4	DIF3C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
5	DIF3T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
6	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
7	GND	GND	Ground pin
8	DIF2C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
9	DIF2T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
10	OE2#	IN	Output Enable for DIF2 output. Control is as follows: 0 = enabled, 1 = Low-Low
11	DIF1C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
12	DIF1T_LPR	OUT	True clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
13	OE1#	IN	Output Enable for DIF1 output. Control is as follows: 0 = enabled, 1 = Low-Low
14	GND	GND	Ground pin
15	VDD_IO	PWR	Power supply for low power differential outputs, nominal 1.05V to 3.3V
16	DIF0C_LPR	OUT	Complement clock of low power differential clock pair. (no 50ohm shunt resistor to GND needed)
17	DIF0T_LPR	OUT True clock of low power differential clock pair. (no 500hm shunt resistor to GND needed)	
18	OE0#	IN	Output Enable for DIF0 output. Control is as follows: 0 = enabled, 1 = Low-Low
19	DIF_INC	IN	Complement side of differential input clock
20	DIF_INT	IN	True side of differential input clock

3

Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Maximum Supply Voltage	VDDA	Core Supply Voltage		4.6	V	1,7
Maximum Supply Voltage	VDD_IO	Low-Voltage Differential I/O	0.99	3.8	V	1,7
Maximum Input Voltage	V _{IH}	3.3V LVCMOS Inputs		4.6	V	1,7,8
Minimum Input Voltage	V _{IL}	Any Input	Vss - 0.5		V	1,7
Ambient Operating Temp	TambCOM	Commercial Range	0	70	C°	1
Storage Temperature	Ts	-	-65	150	°C	1,7
Input ESD protection	ESD prot	Human Body Model	2000		V	1,7

Electrical Characteristics–Input/Supply/Common Output Parameters

B / B / I /	o) // /= = :		-			
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Supply Voltage	VDDA	Supply Voltage	3.000	3.600	V	1
		Low-Voltage Differential I/O				_
Supply Voltage	VDDxxx_IO	Supply	0.99	3.600	V	1
				V _{DD} +		
Input High Voltage	V _{IHSE}	Single-ended inputs	2	0.3	V	1
Input Low Voltage	V _{ILSE}	Single-ended inputs	V _{SS} - 0.3	0.8	V	1
Differential Input High		Differential inputs				
Voltage	VIHDIF	(single-ended measurement)	600	1.15	V	1
Differential Input Low		Differential inputs				
Voltage	VILDIF	(single-ended measurement)	V _{SS} - 0.3	300	V	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4	8	V/ns	2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	5	uA	1
	I _{DD_3.3V}	VDDA supply current		20	mA	1
		VDD_IO supply @ fOP =				
Operating Supply Current	I _{DD_IO_133M}	133MHz		20	mA	1
		VDDA supply current, Input				
	I _{DD_SB_3.3V}	stopped, OE# pins all high		750	uA	1
Power Down Current		VDD_IO supply, Input				
(All OE# pins High)	I _{DD_SBIO}	stopped, OE# pins all high		150	uA	1
Input Frequency	F _i	$V_{DD} = 3.3 V$	15	150	MHz	2
Pin Inductance	L _{pin}			7	nH	1
	C _{IN}	Logic Inputs	1.5	5	рF	1
Input Capacitance	C _{OUT}	Output pin capacitance		6	рF	1
		Number of clocks to enable				
OE# latency		or disable output from				
(at least one OE# is low)	т	assertion/deassertion of OE#	1	3	periods	1
	T _{OE#LAT}	Delay from assertion of first	1	5	penous	-
		OE# to first clock out				
Clock stabilization time		(assumes input clock running				
(from all OE# high to first		and device in power down				
OE# low).	T _{STAB}	state))		150	ns	1
	· STAD	Output enable after			-	-
Tdrive_OE#	T _{DROE#}	OE# de-assertion		10	ns	1
 Tfall_OE#	T _{FALL}			5	ns	1
 Trise_OE#	T _{RISE}	Fall/rise time of OE# inputs		5	ns	1
		· · · · · · · · · · · · · · · · · · ·				

AC Electrical Characteristics–DIF Low Power Differential Outputs

				-		
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	1.5	4	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	1.5	4	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement		20	%	1
Maximum Output Voltage	V _{HIGH}	Includes overshoot		1150	mV	1
Minimum Output Voltage	V _{LOW}	Includes undershoot	-300		mV	1
Differential Voltage Swing	V _{SWING}	Differential Measurement	1200		mV	1
Crossing Point Voltage	V _{XABS}	Single-ended Measurement	300	550	mV	1,3,4
Crossing Point Variation	V _{XABSVAR}	Single-ended Measurement		140	mV	1,3,5
Duty Cycle Distortion	D _{CYCDIS0}	Differential Measurement, fIN<=133.33MHz		3	%	1,6
Additive Cycle to Cycle Jitter	DIFJ _{C2CADD}	Differential Measurement, Additive		15	ps	1
DIF[3:0] Skew	DIF _{SKEW}	Differential Measurement		50	ps	1
Propagation Delay	t _{PD}	Input to output Delay	2.5	3.5	ns	1
Additive Phase Jitter - PCIe Gen1	$t_{phase_addPCleG1}$	1.5MHz < 22MHz		6	ps Pk- Pk	1,9
Additive Phase Jitter - PCIe Gen2 High Band	t _{phase_add} PCleG2HI	High Band is 1.5MHz to Nyquist (50MHz)		0.16	ps rms	1,9
Additive Phase Jitter PCIe Gen2 Low Band	$t_{phase_addPCleG2LO}$	Low Band is 10KHz to 1.5MHz		0.07	ps rms	1,9
Additive Phase Jitter PCIe Gen3-4	t _{phase_add} PCleG3-4	2M-4M, or 2M to 5M		0.1	ps rms	1,9

Notes on Electrical Characteristics (all measurements use 9LRS3187B as clock source and R_s = 33ohms/C_L = 2pF test load):

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ This figure refers to the maximum distortion of the input wave form.

⁷ Operation under these conditions is neither implied, nor guaranteed.

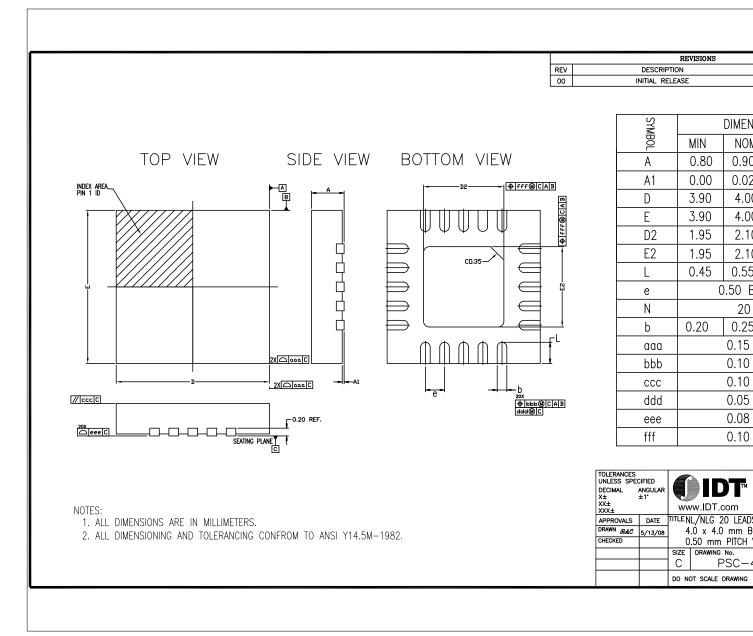
⁸ Maximum input voltage is not to exceed maximum VDD

⁹ The 6V31024 has no PLL, so the part itself contributes very little jitter to the input clock. But this also means that the 6V31024 cannot 'dejitter' a noisy input clock. Values calculated per PCI SIG and per Intel Clock Jitter tool version 1.6.6for Common Clock Architectures.

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		39		°C/W
Ambient	θ_{JA}	1 m/s air flow		36		°C/W
	θ_{JA}	2.5 m/s air flow		34		°C/W

Marking Diagram

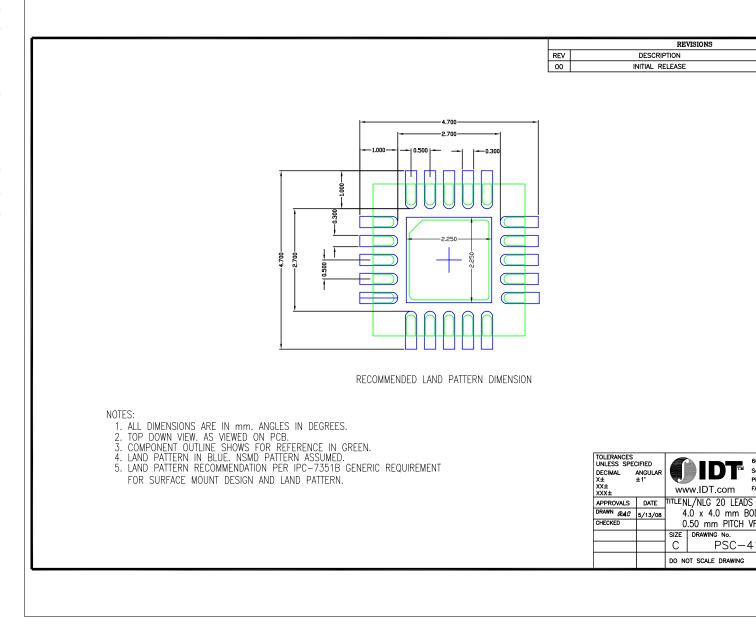

Notes:

1. '\$' denotes the mark code.

2. 'G' after the two-letter package code denotes Pb-free, RoHS compliant.

3. 'YYWW' is the date code the part was assembled.

4. Bottom marking: country of origin.



IDT® 4-OUTPUT FANOUT BUFFER FOR PCIE GEN1, 2, 3, 4

7

REV C 081517

6V31024

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
6V31024NLG	Trays	20-VFQFPN	0 to +70°C
6V31024NLG8	Tape and Reel	20-VFQFPN	0 to +70°C

"G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Issue Date	Description	Page #
А	5/16/2012	Initial Release.	
В	6/8/2012	Added Thermal char table and marking diagram	6
с	8/15/2017	 Updated front page text to indicate PCIe Gen1-4, Updated Data sheet Title Renamed "Terminations" to "Test Loads" and updated drawing to latest format. No change to values. Updated "MLF" package references to "VFQFPN" throughout data sheet Updated "DIF Low Power Differential Outputs" Table to include PCIe Gen3 and 4 Updated package drawing to latest format. No change to package. 	1, 2, 5, 7

Innovate with IDT and accelerate your future networks. Contact:

For Sales 800-345-7015 408-284-8200 www.idt.com/go/sales For Tech Support

Corporate Headquarters

Integrated Device Technology, Inc. <u>www.idt.com</u>

WWW.IDT.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7 ADCLK905BCPZ-R2