Renesas Freescale P10XX and P20XX System Clock with Selectable DDR Frequency

Description

The 6V49205B is a main clock for Freescale P10xx and P20xx-based systems. It has a selectable System CCB clock and 2 DDRCLK speeds -100 M or 66.66M. The 6V49205B also provides LP-HCSL PCle outputs for low-power and reduced board space.

Output Features

- 1 - Sys_CCB 3.3V LVCMOS output at 100M/83.33M/ 80M/66.66M
- 1 - DDRCLK 3.3V LVCMOS output at 100 M or $66.66 \mathrm{M}^{1}$
- 1 - 125M 3.3V LVCMOS output
- 6 - LP-HCSL PCle pairs selectable at 100 M or 125 M
- $6-25 \mathrm{MHz} 3.3 \mathrm{~V}$ LVCMOS outputs
- 2 - 2.048M 3.3V LVCMOS outputs
- 2 - USB 3.3V LVCMOS outputs at 12 M or 24 M

Key Specifications

- PCle Gen1-2-3 compliant
- <3p rms phase noise on REF outputs

Typical Applications

System Clock for Freescale P10xx and P20xx-based designs

Features

- Replaces 11 crystals, 2 oscillators and 3 clock generators; lowers cost, power and area
- Integrated terminations on LP-HCSL PCle outputs; eliminate 24 resistors, saving $41 \mathrm{~mm}^{2}$ of board area
- Industrial temperature range operation; supports demanding environmental conditions
- Advanced 3.3V CMOS process; high-performance, low-power
- Supports independent spread spectrum on Sys_CCB/DDRCLK and PCle outputs
- Available in space-saving $7 \times 7 \mathrm{~mm} 48$-VFQFPN with 0.5 mm pad pitch; reduced board space without the need for fine-pitch assembly techniques

Block Diagram

Note 1: For DDR Clock: Processor core and I/O supply rails must be ramped with VDD3P3 or earlier. Clock signal will be clamped LOW and output clock will be 100 MHz if this is not followed (see diagram below).

Pin Assignments

48-Pin VFQFPN

^ Indicates Internal 100kohm pull up resistor

Pin Descriptions

PIN \#	PIN NAME	PIN TYPE	DESCRIPTION
1	X2 25	OUT	Crystal output, Nominally 25.00 MHz .
2	X1_25	IN	Crystal input, Nominally 25.00MHz.
3	GNDREF	PWR	Ground pin for the REF outputs.
4	REF5	OUT	Copy of crystal input
5	REF4	OUT	Copy of crystal input
6	REF3	OUT	Copy of crystal input
7	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V
8	GNDREF	PWR	Ground pin for the REF outputs.
9	REF2	OUT	Copy of crystal input
10	REF1	OUT	Copy of crystal input
11	$\begin{aligned} & \text { ^SELPCIE125\#_100/RE } \\ & \text { F0 } \end{aligned}$	I/O	Latched input to select the PCle output frequency/REFO output. $\begin{aligned} & 0=125 \mathrm{M} \\ & 1=100 \mathrm{M} \end{aligned}$
12	AVDD12_24	PWR	Power for 12_24MHz PLL core, and outputs. Nominal 3.3V
13	\wedge ^SO/USB_CLK1	I/O	Frequency select latch for Sys_CCB / 12 or 24 MHz USB clock output. 3.3V. This pin has an internal pull up resistor.
14	\wedge FS1/USB_CLK2	I/O	Frequency select latch for Sys_CCB/12 or 24 MHz USB clock output. 3.3V. This pin has an internal pull up resistor.
15	GND12_24	PWR	Ground pin for 12_24M outputs.
16	GND2.048	PWR	Ground pin for 2.048 M outputs.
17	CK2.048_0	OUT	2.048M output, nominal 3.3V.
18	CK2.048_1	OUT	2.048M output, nominal 3.3V.
19	VDD2.048	PWR	Power supply for 2.048 M outputs, nominal 3.3 V .
20	AVDD125	PWR	Power for 125 MHz PLL core and output, nominal 3.3V
21	125M	OUT	125M output, nominal 3.3V.
22	GND125M	PWR	Ground pin for 125M outputs.
23	PCleT_LR0	OUT	True clock of 0.8 V differential push-pull PCI_Express pair with integrated 33ohm series resistor
24	PCleC_LR0	OUT	Complement clock of 0.8 V differential push-pull PCI_Express pair with integrated 33ohm series resistor
25	PCleC_LR1	OUT	Complement clock of 0.8 V differential push-pull PCI_Express pair with integrated 33ohm series resistor
26	PCleT_LR1	OUT	True clock of 0.8 V differential push-pull PCI_Express pair with integrated 33ohm series resistor
27	VDDPCle	PWR	Power supply for PCI Express outputs, nominal 3.3V
28	GNDPCle	PWR	Ground pin for the PCle outputs.
29	PCleC_LR2	OUT	Complement clock of 0.8 V differential push-pull PCI_Express pair with integrated 33ohm series resistor
30	PCleT_LR2	OUT	True clock of 0.8 V differential push-pull PCI_Express pair with integrated 330hm series resistor
31	PCleC_LR3	OUT	Complement clock of 0.8 V differential push-pull PCI _Express pair with integrated 330 hm series resistor
32	PCleT_LR3	OUT	True clock of 0.8 V differential push-pull PCI_Express pair with integrated 33ohm series resistor
33	AVDDPCle	PWR	Analog Power supply for PCI Express clocks, nominal 3.3V
34	GNDPCle	PWR	Ground pin for the PCle outputs.
35	PCleC_LR4	OUT	Complement clock of 0.8 V differential push-pull PCI_Express pair with integrated 330 hm series resistor
36	PCleT_LR4	OUT	True clock of 0.8 V differential push-pull PCI_Express pair with integrated 330hm series resistor
37	PCleC_LR5	OUT	Complement clock of 0.8 V differential push-pull PCI_Express pair with integrated 330 hm series resistor
38	PCleT_LR5	OUT	True clock of 0.8 V differential push-pull PCI_Express pair with integrated 33ohm series resistor
39	GNDPCle	PWR	Ground pin for the PCle outputs.
40	GNDSYS	PWR	Ground pin for the Sys_CCB output
41	Sys_CCB	OUT	System CCB clock output
42	AVDDSYS	PWR	Analog Power supply for Sys_CCB clock and outputs, nominal 3.3V
43	VddDDR	PWR	Power supply for DDR Clock output, nominal 3.3V
44	^SEL100\#_66/DDRCLK	I/O	Latched input to select the DDR output frequency/DDRCLK output. See note regarding system power sequencing. $\begin{aligned} & 0=100 \mathrm{M} \\ & 1=66.666 \mathrm{M} \end{aligned}$
45	GndDDR	PWR	Ground pin for the DDR outputs.
46	SCLK	IN	Clock pin of SMBus circuitry.
47	SDATA	I/O	Data pin for SMbus circuitry.
48	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V

Table 1: PCIEX Spread Table (selectable via SMBUS)

SELPCIE125\#_100 B6b4	B0b4	B0b3	Spread \%
$0(125 \mathrm{MHz})$	x	x	No Spread
$1(100 \mathrm{MHz})$	0	0	No Spread (default)
$1(100 \mathrm{MHz})$	0	1	Down -0.5%
$1(100 \mathrm{MHz})$	1	0	Down -0.75%
$1(100 \mathrm{MHz})$	1	1	No Spread

*Once in spread mode, do not return to non spread without reset
Table 2: Sys_CCB and DDR Spread Table (selectable via SMBUS)

BOb7	BOb6	BOb5	Spread \%
0	0	0	No Spread (default)
0	0	1	Down -0.5%
0	1	0	Down -0.75%
0	1	1	Down -0.25%
1	0	0	Down -1%
1	0	1	Down -1.25%
1	1	0	Down -1.5%
1	1	1	Down -2%

Table 3: Sys_CCB Frequency Select Table (Latched and selectable via SMBUS)

FS1 I B4b3	FS0 I B4b2	Sys_CCB (MHz)
0	0	66.66
0	1	100
1	0	80
1	1	83.33

Table 4: PCI Express Amplitude Control

B6b7	B6b6	PCle Amplitude
0	0	700 mV
0	1	800 mV
1	0	900 mV
1	1	1000 mV

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 6V49205B. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Maximum Supply Voltage	VDDxxx	Supply Voltage			4.6	V	1
Maximum Input Voltage	$\mathrm{V}_{\text {IH }}$	Referenced to GND			VDD + 0.5	V	1
Minimum Input Voltage	$\mathrm{V}_{\text {IL }}$	Referenced to GND	GND - 0.5			V	1
Storage Temperature	Ts	-	-65		150	${ }^{\circ} \mathrm{C}$	
Junction Temperature	Tj	-			125	${ }^{\circ} \mathrm{C}$	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

NOTES on Absolute Max Parameters
${ }^{1}$ Operation under these conditions is neither implied, nor guaranteed.

Electrical Characteristics - Input/Supply/Common Output DC Parameters

$\mathrm{T}_{\mathrm{AMB}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%$, All outputs driving test loads (unless noted otherwise).

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Ambient Operating Temp	$\mathrm{T}_{\text {AMB }}$	-	-40	25	85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	VDDxxx	Supply Voltage	3.135	3.3	3.465	V	
Power supply Ramp Time	TPWRRMP	Power supply ramp must be monotonic			4	ms	
Latched Input High Voltage	$\mathrm{V}_{\text {IH_LI }}$	Single-ended Latched Inputs	2.1		$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Latched Input Low Voltage	$\mathrm{V}_{\text {IL_LI }}$	Single-ended Latched Inputs	$\mathrm{V}_{S S}-0.3$		0.8	V	
Input Leakage Current	I_{IN}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$	-5		5	uA	2
Operating Supply Current	$\mathrm{I}_{\text {DDOP3.3 }}$	All outputs loaded and running		119	155	mA	
Input Frequency	F_{i}		23	25	27	MHz	3
Pin Inductance	$\mathrm{L}_{\text {pin }}$			5	7	nH	
	$\mathrm{C}_{\text {IN }}$	Logic Inputs	1.5	3	5	pF	
Input Capacitance	$\mathrm{C}_{\text {Out }}$	Output pin capacitance		5	6	pF	
	$\mathrm{C}_{\text {INX }}$	X1 \& X2 pins		5	6	pF	
Clk Stabilization	$\mathrm{T}_{\text {STAB }}$	From VDD Power-Up or de-assertion of PD to 1st clock		3.2	5	ms	
Tfall_SE	$\mathrm{T}_{\text {FALL }}$	Fall/rise time of all 3.3 V control inputs from			10	ns	1
Trise_SE	$\mathrm{T}_{\text {RISE }}$	20-80\%			10	ns	1
SMBus Voltage	V_{DD}		2.7		3.3	V	
Low-level Output Voltage	$\mathrm{V}_{\text {OLSMB }}$	@ IPULLUP			0.4	V	
Current sinking at $\mathrm{V}_{\text {OLSMB }}=0.4 \mathrm{~V}$	IPuLlup	SMB Data Pin	4			mA	
SCLK/SDATA Clock/Data Rise Time	$\mathrm{T}_{\mathrm{RI} 2 \mathrm{C}}$	$\begin{gathered} (\text { Max VIL }-0.15) \text { to } \\ (\text { Min VIH }+0.15) \end{gathered}$			1000	ns	
SCLK/SDATA Clock/Data Fall Time	$\mathrm{T}_{\mathrm{FI} 2 \mathrm{C}}$	$\begin{aligned} & \text { (Min VIH + 0.15) to } \\ & (\mathrm{Max} \text { VIL }-0.15) \\ & \hline \end{aligned}$			300	ns	
SMBus Operating Frequency	$\mathrm{F}_{\text {SMBUS }}$				400	kHz	

[^0]
AC Electrical Characteristics - Low Power HCSL-Compatible PCle Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock Frequency	f	Spread off	100.00			MHz	2,3
			125.00			MHz	2,3
Synthesis error	$\mathrm{ppm}_{\text {SSoff }}$	PCle 100 MHz or 125 MHz	0			ppm	1,2
	$\mathrm{ppm}_{\text {Sson }}$	PCle @ -0.5\% spread, 100MHz only	+/-100			ppm	1,2
Rising/Falling Edge Slew Rate	$\mathrm{t}_{\text {SLEW }}$	Differential Measurement	2.2	4.1	5.7	V/ns	1,3,6
Slew Rate Variation	$\mathrm{t}_{\text {SLVAR }}$	Single-ended Measurement		1	20	\%	1,6
Maximum Output Voltage	$\mathrm{V}_{\text {HIGH }}$	Includes overshoot		793	1150	mV	6,7
Minimum Output Voltage	$V_{\text {LOW }}$	Includes undershoot	-300	-22		mV	6,7
Differential Voltage Swing	$\mathrm{V}_{\text {SWING }}$	Differential Measurement	300			mV	1,6
Crossing Point Voltage	$V_{\text {XABS }}$	Single-ended Measurement	300	419	550	mV	1,4,6
Crossing Point Variation	$\mathrm{V}_{\text {XABSVAR }}$	Single-ended Measurement		115	140	mV	1,4,5
Duty Cycle	$\mathrm{D}_{\text {CYC }}$	Differential Measurement	45	50.1	55	\%	1
PCle Jitter - Cycle to Cycle	$\mathrm{PCle}_{\mathrm{Jc} 2 \mathrm{C}}$	Differential Measurement		36	125	ps	1
PCle[5:0] Skew	$\mathrm{T}_{\text {SKEwPCIe50 }}$	Differential Measurement		1172	1500	ps	1,6,8
Spread Spectrum Modulation Frequency	$\mathrm{f}_{\text {SSMOD }}$	Triangular Modulation	30	31.5	33	kHz	

Notes for PCle Clocks:

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Clock Frequency specifications are guaranteed assuming that REF is at 25 MHz .
${ }^{3}$ Slew rate measured through V _swing voltage range centered about differential zero.
${ }^{4}$ Vcross is defined at the voltage where Clock $=$ Clock\#.
${ }^{5}$ Only applies to the differential rising edge (Clock rising, Clock\# falling.)
${ }^{6}$ At default SMBus settings.
${ }^{7}$ The Freescale P-series CPU's have internal terminations on their SerDes Reference Clock inputs. The resulting amplitude at these inputs will be $1 / 2$ of the values listed, which are well within the 800 mV Freescale specification for these inputs.
${ }^{8}$ This value includes an intentional output-to-output skew of approximately 250 ps.

Electrical Characteristics - Phase Jitter, PCle Outputs at 100MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY SPEC LIMIT	UNITS	NOTES
Jitter, Phase	$\mathrm{t}_{\text {jphPCle }}$	PCle Gen 1 phase jitter		35	56	86	ps	1,2,3
	$\mathrm{t}_{\text {jphPClezLo }}$	PCle Gen 2 phase jitter Lo-band content		1.6	2.4	3	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \\ \hline \end{gathered}$	1,2,3
	$\mathrm{t}_{\text {jphPCle2Hi }}$	PCle Gen 2 phase jitter Hi-band content		1.9	2.8	3.1	$\begin{gathered} \hline \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$	1,2,3
	$\mathrm{t}_{\text {jphPCle3 }}$	PCle Gen 3 phase jitter		0.5	0.83	1	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	1,2,3

Notes on Phase Jitter:

${ }^{1}$ See http://www.pcisig.com for complete specs. Guaranteed by design and characterization, not tested in production.
${ }^{2}$ Sample size of at least 100 K cycles. This figures extrapolates to 108 ps pk-pk @ 1 M cycles for a BER of 1^{-12}.
${ }^{3}$ Applies to PCle outputs @ default amplitude and 100 MHz with spread off or at -0.5%.

Electrical Characteristics - DDR Clock

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
DDR Clock Frequency	$\mathrm{f}_{\text {DDR66.66 }}$	SEL100\#_66 = 1, $\mathrm{V}_{\mathrm{T}}=$ OVDD/2 V	66.666			MHz	2,3,6
	$\mathrm{f}_{\text {DDR } 100}$	SEL100\#_66 = 0, $\mathrm{V}_{\mathrm{T}}=$ OVDD/2 V	100.00			MHz	2,3,6
Synthesis error	$\mathrm{ppm}_{\text {SSoff }}$	Spread off	0			ppm	1,2,5
	$\mathrm{ppm}_{\text {Sson }}$	Spread on	+/-150			ppm	1,2,5
Output High Voltage	$\mathrm{V}_{\text {OH }}$	$\mathrm{V}_{\text {OH }}$ at the selected operating frequency	2.4			V	1
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\text {OL }}$ at the selected operating frequency			0.4	V	1
Slew Rate $\mathrm{VDDO}=3.3 \mathrm{~V}$	$\mathrm{t}_{\text {sLEW00 }}$	'00' = Hi-Z	Hi-Z			V/ns	
	$\mathrm{t}_{\text {SLEW01 }}$	'01' Slow Slew Rate (Averaging on)	1.1	1.6	2.3	V/ns	1,3,8
	$\mathrm{t}_{\text {SLEW10 }}$	'10' Fast Slew Rate (Averaging on)	1.6	2.3	3.2	V/ns	1,3,8
	$\mathrm{t}_{\text {sLEW11 }}$	'11' Fastest Slew Rate (Averaging on)	1.8	2.7	3.7	V/ns	1,3,8
Duty Cycle	$\mathrm{d}_{\mathrm{t} 1}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$	40	51.4	60	\%	1,6
Jitter, Peak period jitter	$\mathrm{t}_{\text {jpeak }}$	$\mathrm{V}_{\mathrm{T}}=0 \mathrm{VDD} / 2 \mathrm{~V}$		± 96	± 150	ps	1,6
Phase Noise	$\mathrm{t}_{\text {phasenoise }}$	-56dBc		10	500	kHz	1,7
AC Input Swing Limits @ 3.3V OV ${ }_{D D}$	T $\mathrm{V}_{\text {AC }}$	This is the difference between VOL and VOH at the selected operating frequency.	1.9	3.4		V	1
Spread Spectrum Modulation Frequency	$\mathrm{f}_{\text {SSMOD }}$	Triangular Modulation	30	32.3	60	kHz	

Electrical Characteristics - Sys_CCB

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock Frequency	$\mathrm{f}_{\text {Sys_c }}$	$\mathrm{FS}(1: 0)=00, \mathrm{VT}=0 \mathrm{VDD} / 2 \mathrm{~V}$	66.666			MHz	2,3,6
		$\mathrm{FS}(1: 0)=01, \mathrm{VT}=\mathrm{OVDD} / 2 \mathrm{~V}$	100.00			MHz	2,3,6
		FS (1:0) = 10, VT = OVDD/2 V	80.00			MHz	2,3,6
		FS(1:0) = 11, VT = OVDD/2 V	83.333			MHz	2,3,6
Synthesis error	$\mathrm{ppm}_{\text {SSoff }}$	Spread off	0			ppm	1,2,5
	$\mathrm{ppm}_{\text {sson }}$	Spread on	+/-150			ppm	1,2,5
Output High Voltage	V_{OH}	$\mathrm{V}_{\text {OH }}$ at the selected operating frequency	2.4			V	1
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	V_{OL} at the selected operating frequency			0.4	V	1
Slew Rate$\mathrm{VDDO}=3.3 \mathrm{~V}$	$\mathrm{t}_{\text {sLEw }}$ o	'00' = Hi-Z	Hi-Z			V/ns	
	$\mathrm{t}_{\text {SLEW01 }}$	'01' Slow Slew Rate (Averaging on)	0.8	1.4	2.1	V/ns	1,3,8
	$\mathrm{t}_{\text {SLEW10 }}$	'10' Fast Slew Rate (Averaging on)	0.9	1.6	2.5	V/ns	1,3,8
	$\mathrm{t}_{\text {SLEW11 }}$	'11' Fastest Slew Rate (Averaging on)	1.1	1.9	3.1	V / ns	1,3,8
Duty Cycle	$\mathrm{d}_{\text {t1 }}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$	40	51.4	60	\%	1,6
Jitter, Peak period jitter	$\mathrm{t}_{\text {jpeak }}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}, \mathrm{SSC}<0.75 \%$		± 116	± 150	ps	1
Phase Noise	$\mathrm{t}_{\text {phasenoise }}$	-56dBc		10	500	kHz	1,7
AC Input Swing Limits @ 3.3V $O V_{D D}$	$\rightarrow \mathrm{V}_{\mathrm{AC}}$	This is the difference between VOL and VOH at the selected operating frequency.	1.9			V	1
Spread Spectrum Modulation Frequency	$\mathrm{f}_{\text {SSMOD }}$	Triangular Modulation	0	31.5	60	kHz	

Electrical Characteristics - 125M

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock frequency	$\mathrm{f}_{125 \mathrm{M}}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$	125.00			ns	2,3,6
Synthesis error	ppm		0			ppm	1,2,5
Output High Voltage	V_{OH}	V_{OH} at the selected operating frequency	2.2			V	1
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	V_{OL} at the selected operating frequency			0.5	V	1
Rise/Fall time $\mathrm{VDDO}=3.3 \mathrm{~V}$	$\mathrm{t}_{\text {RF125M3.3V }}$	Measured between 0.6 V and 2.7 V		0.7	1	ns	1,3
Duty Cycle	$\mathrm{d}_{\text {t1 }}$	$\mathrm{V}_{\mathrm{T}}=0 \mathrm{VDD} / 2 \mathrm{~V}$	47	52	53	\%	1
Jitter, Peak period jitter	$\mathrm{t}_{\text {jpeak }}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$			± 150	ps	1

Electrical Characteristics - REF(5:0)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock Frequency	f	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$	25.00			MHz	2,3
Crystal Frequency Error	ppm	Including all aging and tuning effects	-50		50	ppm	1,2
Output High Voltage	V_{OH}	V_{OH} at the selected operating frequency	2.2			V	1
Output Low Voltage	V_{OL}	V_{OL} at the selected operating frequency			0.4	V	1
Slew Rate	$\mathrm{t}_{\text {SLEW }}$	'00' = Hi-Z	1.0	1.7	2.7	V/ns	1,3,4
Duty Cycle	$\mathrm{d}_{\mathrm{t} 1}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$	40	51	60	\%	1
Pin to Pin Skew	$\mathrm{t}_{\text {skew }}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$, odd/even outputs have an intentional 180degree phase shift.	N/A			ps	1
Jitter, Peak period jitter	$\mathrm{t}_{\text {jpeak }}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$		± 78	± 200	ps	1
Jitter, Phase	$\mathrm{t}_{\text {jphase }}$	$(12 \mathrm{kHz}-5 \mathrm{MHz}), \mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$		1.7	3	ps rms	1

Electrical Characteristics - USB_CLK(2:1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock Frequency	fusb_CLK	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$	12.00			MHz	2,3
			24.00			MHz	2,3
Synthesis error	ppm		0			ppm	1,2,5
Output High Voltage	V_{OH}	V_{OH} at the selected operating frequency	2.2			V	1
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\text {OL }}$ at the selected operating frequency			0.4	V	1
Slew Rate$\mathrm{VDDO}=3.3 \mathrm{~V}$	$\mathrm{t}_{\text {sLEW00 }}$	'00' = Hi-Z	Hi-Z			V/ns	
	$\mathrm{t}_{\text {sLEW01 }}$	'01' Slow Slew Rate (Averaging on)	1.0	1.4	1.8	V/ns	1,3,4
	$\mathrm{t}_{\text {SLEW10 }}$	'10' Fast Slew Rate (Averaging on)	1.5	2.0	2.7	V/ns	1,3,4
	$\mathrm{t}_{\text {sLEW11 }}$	'11' Fastest Slew Rate (Averaging on)	1.8	2.3	3.1	V/ns	1,3,4
Duty Cycle	$\mathrm{d}_{\mathrm{t} 1}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$	45	50.3	55	\%	1
Jitter, RMS	$\mathrm{t}_{\mathrm{jRMS}}$	12 kHz to Nyquist		23	120	ps	1
Jitter, Cycle to cycle	$\mathrm{t}_{\text {jcy }}$-cyc	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$		142	350	ps	1

Electrical Characteristics - 2.048M(1:0)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock Frequency	fusb_CLK	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$	2.048			MHz	2,3,6
Synthesis error	ppm		0			ppm	1,2,5
Output High Voltage	V_{OH}	V_{OH} at the selected operating frequency	2.2			V	1
Output Low Voltage	V_{OL}	$\mathrm{V}_{\text {OL }}$ at the selected operating frequency			0.4	V	1
$\begin{gathered} \text { Slew Rate } \\ \text { VDDO }=3.3 \mathrm{~V} \end{gathered}$	$\mathrm{t}_{\text {SLEW00 }}$	'00' = Hi-Z	Hi-Z			V/ns	
	$\mathrm{t}_{\text {SLEW01 }}$	'01' Slow Slew Rate (Averaging on)	1.1	1.7	2.5	V/ns	1,3,4
	$\mathrm{t}_{\text {SLEW10 }}$	'10' Fast Slew Rate (Averaging on)	1.6	2.3	3.2	V/ns	1,3,4
	$\mathrm{t}_{\text {SLEW11 }}$	'11' Fastest Slew Rate (Averaging on)	1.8	2.6	3.6	V/ns	1,3,4
Duty Cycle	$\mathrm{d}_{\mathrm{t} 1}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$	45	46.7	55	\%	1
Pin to Pin Skew	$\mathrm{t}_{\text {skew }}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$		108	250	ps	1
Jitter, RMS	$\mathrm{t}_{\text {jRMS }}$	12 kHz to Nyquist		47	70	ps	1
Jitter, Peak period jitter	$\mathrm{t}_{\text {jpeak }}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{OVDD} / 2 \mathrm{~V}$		± 170	± 250	ps	1

Notes for single-ended clocks:

${ }^{1}$ Guaranteed by design and characterization, not 100\% tested in production.
${ }^{2}$ Clock Frequency specifications are guaranteed assuming that REF is at 25 MHz .
${ }^{3}$ At default SMBus settings.
${ }^{4}$ Measured between 20% and 80% of OVDD.
${ }^{5}$ This is the frequency error with respect to the crystal frequency.
${ }^{6}$ Measured at the rising and/or falling edge at OVDD/2 V.
${ }^{7}$ Phase noise is calculated as the FFT of the TIE jitter.
${ }^{8}$ Slew rate is measured from $\pm 0.3 \Delta \mathrm{~V}_{\mathrm{AC}}$ at the center of peak to peak voltage at the clock input.

Renesns

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a stop bit

Index Block Write Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address D2 ${ }_{(H)}$			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
Data Byte Count $=$ X			
			ACK
Beginning Byte N			
			ACK
0			
0			0
0			0
			0
Byte $\mathrm{N}+\mathrm{X}-1$			
			ACK
P	stoP bit		

Note: $I^{2} \mathbf{C}$ compatible. Native mode is SMBus Block mode protocol. To use $I^{2} \mathrm{C}$ Byte mode set the $2^{\wedge} 7$ bit in the command Byte. No Byte count is used.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count $=\mathrm{X}$
- IDT clock sends Byte $N+X-1$
- IDT clock sends Byte 0 through Byte X (if $X_{(H)}$ was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation				
Controller (Host)		IDT (Slave/Receiver)		
T	starT bit			
Slave Address D2 ${ }_{(H)}$				
WR	WRite			
			ACK	
Beginning Byte $=\mathrm{N}$				
			ACK	
RT	Repeat starT			
Slave Address D3 ${ }_{(H)}$				
RD	ReaD			
			ACK	
		Data Byte Count=X		
ACK				
		$\underset{\sim}{\infty}$	Beginning Byte N	
	ACK			
			0	
	0		0	
	0		0	
0				
		Byte N + X - 1		
N	Not acknowledge			
P	stoP bit			

Byte 0 Frequency and Spread Select Register

Bit	Name	Description	Type	0	1	Default
7	SS4	Sys_CCB and DDRCLK SpreadSelection Table	RW	See Table 2: Sys_CCB and DDRCLK Spread Table		0
6	SS3		RW			0
5	SS2		RW			0
4	SS1	PCIE Spread Selection Table	RW	See Table 1: PCIE Spread Tabl		0
3	SS0		RW			0
2	REF_5_EN	Output enable for REF_5	RW	Output Disabled	Output Enabled	1
1	REF_4_EN	Output enable for REF_4	RW	Output Disabled	Output Enabled	1
0	REF_3_EN	Output enable for REF_5	RW	Output Disabled	Output Enabled	1

Byte 1 Output Enable Register

Bit	Name	Description	Type	$\mathbf{0}$	$\mathbf{0}$	Default
7	REF_2_EN	Output enable for REF_2	RW	Output Disabled	Output Enabled	1
6	REF_1_EN	Output enable for REF_1	RW	Output Disabled	Output Enabled	1
5	REF_0_EN	Output enable for REF_0	RW	Output Disabled	Output Enabled	1
4	USB_CLK1_EN	Output enable for USB_CLK1	RW	Output Disabled	Output Enabled	1
3	USB_CLK2_EN	Output enable for USB_CLK2	RW	Output Disabled	Output Enabled	1
2	CK2.048_0_EN	Output enable for CK2.048_0	RW	Output Disabled	Output Enabled	1
1	CK2.048_1_EN	Output enable for CK2.048_1	RW	Output Disabled	Output Enabled	1
0	DDRCLK_EN	Output enable for DDRCLK	RW	Output Disabled	Output Enabled	1

Byte 2 Output Enable Register

Bit	Name	Description	Type	$\mathbf{0}$	$\mathbf{0}$	Default
7	Sys_CCB_EN	Output enable for Sys_CCB	RW	Output Disabled	Output Enabled	1
6	PCle5_EN	Output enable for PCle5	RW	Output Disabled	Output Enabled	1
5	PCle4_EN	Output enable for PCle4	RW	Output Disabled	Output Enabled	1
4	PCle3_EN	Output enable for PCle3	RW	Output Disabled	Output Enabled	1
3	PCle2_EN	Output enable for PCle2	RW	Output Disabled	Output Enabled	1
2	PCle1_EN	Output enable for PCle1	RW	Output Disabled	Output Enabled	1
1	PCle0_EN	Output enable for PCle0	RW	Output Disabled	Output Enabled	1
0	125M_EN	Output enable for 125M	RW	Output Disabled	Output Enabled	1

Byte 3 Slew Rate Control Register

Byte 4 Slew Rate Control Register

Bit	Name	Description	Type	0	1	Default
7	DDR_Slew1	DDRCLK Slew Rate Control	RW	See DDR Electrical Tables		0
6	DDR_Slew0		RW			1
5	Reserved					0
4	Reserved					1
3	FS1	Sys_CCB Frequency Select Latch	RW	See Table 3: Sys_CCB Frequency Selection		Latch
2	FS0		RW			Latch
1	USB1_fSel	USB_CLK1 Clock Frequency Select	RW	12 MHz	24MHz	0
0	USB2_fSel	USB_CLK2 Clock Frequency Select	RW	12 MHz	24MHz	1

Byte 5 is Reserved

Byte 6 PCI Express Amplitude Control Register

Bit	Name	Description	Type	0	1	Default
7	PCIE_AMP1	PCI Express Amplitude Control	RW	See Table 4: PCle Amplitude Selection Table		0
6	PCIE_AMP0		RW			1
5	SEL100\#_66	DDRCLK latch select	R	100 MHz	66 MHz	latch
4	SELPCIE125\#_100	PCI Express latch select	R	125 MHz	100 MHz	latch
3	Reserved	Reserved	RW	-	-	0
2	Reserved	Reserved	RW	-	-	1
1	Reserved	Reserved	RW	-	-	0
0	Reserved	Reserved	RW	-	-	1

Byte 7 Revision and Vendor ID Register

Bit	Name	Description	Type	0	1	Default
7	REV ID	Revision ID	R	-	-	0
6	REV ID		R	-	-	0
5	REV ID		R	-	-	0
4	REV ID		R	-	-	1
3	Vendor ID	Vendor ID	R	-	-	0
2	Vendor ID		R	-	-	0
1	Vendor ID		R	-	-	0
0	Vendor ID		R	-	-	1

Byte 8 Byte Count Register

Bit	Name	Description	Type	$0-1$	Default
7	BC7	Byte Count Programming $\mathrm{b}(7: 0)$	RW	Writing to this register will configure how many bytes will be read back.	0
6	BC6		RW		0
5	BC5		RW		0
4	BC4		RW		0
3	BC3		RW		0
2	BC2		RW		1
1	BC1		RW		0
0	BC0		RW		1

Recommended Crystal Characteristics

PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	1
Resonance Mode	Fundamental	-	1
Frequency Tolerance @ $25^{\circ} \mathrm{C}$	± 20	PPM Max	1
Frequency Stability, ref @ $25^{\circ} \mathrm{C}$ Over Operating Temperature Range	± 20	PPM Max	1
Temperature Range (commercial)	$0 \sim 70$	${ }^{\circ} \mathrm{C}$	1
Temperature Range (industrial)	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$	1
Equivalent Series Resistance (ESR)	50	$\Omega \mathrm{Max}$	1
Shunt Capacitance $\left(\mathrm{C}_{\mathrm{O}}\right)$	7	pF Max	1
Load Capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$	8	pF Max	1
Drive Level	0.1	mW Max	1
Aging per year	± 5	PPM Max	1

Test Loads

Differential Test Load, Zo = 100ohm, L=5inches
Thermal Characteristics (48-TSSOP)

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
Thermal Resistance	$\theta_{\text {Jc }}$	Junction to Case	PAG48	28	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	θ_{Jb}	Junction to Base		42	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JAO }}$	Junction to Air, still air		62	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\mathrm{JA} 1}$	Junction to Air, $1 \mathrm{~m} / \mathrm{s}$ air flow		54	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA3 }}$	Junction to Air, $3 \mathrm{~m} / \mathrm{s}$ air flow		51	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1

Thermal Characteristics (48-VFQFPN)

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
Thermal Resistance	$\theta_{\text {Jc }}$	Junction to Case	NLG48	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	θ_{Jb}	Junction to Base		3.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JAO }}$	Junction to Air, still air		32	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA1 }}$	Junction to Air, $1 \mathrm{~m} / \mathrm{s}$ air flow		25	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA3 }}$	Junction to Air, $3 \mathrm{~m} / \mathrm{s}$ air flow		22	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1

${ }^{1} \mathrm{ePad}$ soldered to board

Marking Diagrams

Notes:

1. " $\$$ " is the mark code.
2. "YYWW" is the last two digits of the year, and the week number that the part was assembled.
3. "G" after the two-letter package code denotes Pb free package.
4. "I" denotes industrial temperature range.
5. Bottom marking for TSSOP: country of origin if not USA.

Renesas

Renesns

RECDMMENDED LAND PATTERN DIMENSIZN

TOLERANCES UNLESS SPECIFIED DECIMAL ANGULAR $X X \pm$ \pm $X X X \pm$ XXXX \pm 			
APPROVALS	DATE	$\begin{aligned} & \text { TITLE } \mathrm{NL} / \mathrm{NLG} 48 \mathrm{PACK} \\ & 7.0 \times 7.0 \mathrm{~mm} \mathrm{Bl} \\ & 0.5 \mathrm{~mm} \text { PITCH } \end{aligned}$	
drawn ade	10/18/07		
CHECKED			
		SIZE	DRAWING No.
		C	PSC
		DO NOT	T SCALE DRAWING

Renesas

NOTES:
1 ALl dimensioning and toleralcing conforn to Ansi y14.5N-1982
2 Datums - -A- avd - -B- to be detervned at datuv plane -H-
3) Dimension e to be deteruined at seating plane -c-

4 Dimensions d and el are to be determned at datum plave -H-

(s) DIMENSION D DOES NOT IMCLUDE MOLD FLASH, PROTRUSONS OR GATE BURRS

6 DIMENSION E1 DOES NOT INCLuDE interlead flash or protrusions. Inter_ead
LASH OR PROTRUSIONS SHALL NOT EXCELD .25 mm PER SIDE
A DEtall OF PN 1 DENTIFER IS OPTIONAL BUT nUST BE LOCated WTHIN THE ZONE NDCATED
8 LEAD WIDTH DIMENSION DOES NOT iclude davbar protrusion. Allowable
DAMBAR PROTRUSION IS .08 mm IN EXCESS OF THE LEAD WIDTH DIMENSION
AT MAXIUM WATERAL CONDTION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT
A these dimensions apply to the flat secton of the lead between
.10 AND .25 mm FRON THE LEAD TIP TOLERANCES
10 ALL DIMENSIONS ARE IN NILLIVETERS

THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO-153,

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
$6 \mathrm{VV49205BPAGI}$	see page 12	Tubes	48 -pin TSSOP	-40 to $+85^{\circ} \mathrm{C}$
6V49205BPAGI8		Tape and Reel	48 -pin TSSOP	-40 to $+85^{\circ} \mathrm{C}$
6V49205BNLGI	see page 12	Tray	48 -pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$
6V49205BNLGI8		Tape and Reel	48 -pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$

"G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

Revision History

Rev.	Issue Date	Issuer	Description	Page \#
M	$12 / 9 / 2013$	R. Wade	1. Extensive overhaul of Electrical tables to more closely align with Freescale published specifications. 2. Updated electrical tables with characterization data. 3. Clarified SMBus registers for Slew Rate Controls 4. Moved electrical tables in front of SMBus for consistency with other data sheets. 5. Updated Thermal Data and added test loads for clarity. 6. Updated front page text 7. Minor updates to pin names (mainly power and ground) for consistency and clarity 8. Move to Final	Various
Q	$6 / 2 / 2014$	R. Wade	1. Corrected pin description for pin 44.	
P	$8 / 10 / 2015$	R. Wade	1. Updated SMBus operating frequency from 100KHz minimum to 400KHz maximum.	5
R	$11 / 22 / 2016$	RDW	1. Correct PCleT_LRn and PCleC_LRn to be PCleT_Ln and PCleC_Ln to indicate that the Rs for the PCle outputs is outside the part and to correct the pin description accordingly. The test loads for the device are correct. 2. Update block diagram PCle pin names to be consistent.	$1-3$
S	$5 / 5 / 2017$	1. Undo Revision Q 2. PCle outputs have integrated terminations for 100ohm differential Zo. 3. Update Test Loads 4. Update Features/Benefits	1 RDW	1. Updated bit values in the "Sys_CCB Frequency Select" table. 2. Updated 48-TSSOP and 48-VFQFPN package outline drawings. 3. Updated legal disclaimer.

Renesns

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1

[^0]: NOTES on DC Parameters: (unless otherwise noted, guaranteed by design and characterization, not 100\% tested in production).
 ${ }^{1}$ Signal is required to be monotonic in this region.
 ${ }^{2}$ Input leakage current does not include inputs with pull-up or pull-down resistors.
 ${ }^{3}$ For margining purposes only. Normal operation should have Fin $=25 \mathrm{MHz}$.

