General Description

The IDT6V61036 is a low-power 6-output differential buffer that meets all the performance requirements of the Intel DB1200Z specification. It consumes 50% less power than standard HCSL devices and has internal terminations to allow direct connection to 85 ohm transmission lines. It is suitable for PCI-Express Gen1/2/3 or QPI/UPI applications, and uses a fixed external feedback to maintain low drift for demanding QPI/UPI applications.

Recommended Application

Buffer for Romley, Grantley and Purley Servers, SSDs and PCle

Output Features

- 6 - LP-HCSL Output Pairs w/integrated terminations (Zo $=85 \Omega$)

Features/Benefits

- Low-Power-HCSL outputs w/Zo = 85 ; save power and board space - no termination resistors required. Ideal for blade servers.
- Space-saving 40-pin VFQFPN package
- Fixed feedback path for Ops input-to-output delay
- 6 OE\# pins/Hardware control of each output
- PLL or bypass mode; PLL can dejitter incoming clock
- Selectable PLL bandwidth; minimizes jitter peaking in downstream PLL's
- Spread Spectrum Compatible; tracks spreading input clock for low EMI

Key Specifications

- Cycle-to-cycle jitter <50ps
- Output-to-output skew <65ps
- Input-to-output delay variation $<50 \mathrm{ps}$
- PCle Gen3 phase jitter <1.0ps RMS
- QPI/UPI 9.6GT/s 12UI phase jitter <0.2ps RMS

Block Diagram

Pin Configuration

40-VFQFPN

${ }^{\wedge}$ prefix indicates internal Pull-Up Resistor
v prefix indicates Internal Pull-Dow n Resistor ${ }^{\wedge} \mathrm{v}$ prefix indicates Interal Pull-Up/Dow n Resistor (biased to VDD/2)
$5 \mathrm{~mm} \times 5 \mathrm{~mm} 0.4 \mathrm{~mm}$ pin pitch

Power Management Table

				PLL STATE IF NOT IN
CKPWRGD_PD\#	DIF_IN/ DIF_IN\#	SMBus EN bit	DIF(5:0)/ DIF(5:0)\#	BYPASS MODE
0	X	X	Low/Low	OFF
1	Running	0	Low/Low	ON
		1	Running	ON

PLL Operating Mode

HiBW_BypM_LoBW\#	MODE
Low	PLL Lo BW
Mid	Bypass
High	PLL Hi BW

NOTE: PLL is OFF in Bypass Mode
Power Connections

Pin Number		
VDD	GND	
1	41	Analog PLL
5	4	Analog Input
$12,16,20,24,27$ $, 31,32,36,40$	41	DIF clocks

PLL Operating Mode Readback Table

HiBW_BypM_LoBW\#	Byte0, bit 7	Byte 0, bit 6
Low (Low BW)	0	0
Mid (Bypass)	0	1
High (High BW)	1	1

Tri-level Input Thresholds

Level	Voltage
Low	$<0.8 \mathrm{~V}$
Mid	$1.2<\mathrm{Vin}<1.8 \mathrm{~V}$
High	$\mathrm{Vin}>2.2 \mathrm{~V}$

IDT6V61036 SMBus Address | 1101100 | + Read/Write bit |
| :--- | :--- |

Pin Descriptions

PIN \#	PIN NAME	$\begin{aligned} & \text { PIN } \\ & \text { TYPE } \end{aligned}$	DESCRIPTION
1	VDDA	PWR	3.3V power for the PLL core.
2	^vHIBW_BYPM_LOBW\#	$\begin{array}{\|c\|} \hline \text { LATCHE } \\ \text { D IN } \\ \hline \end{array}$	Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.
3	CKPWRGD_PD\#	Trays	3.3V Input notifies device to sample latched inputs and start up on first high assertion, or exit Power Down Mode on subsequent assertions. Low enters Power Down Mode.
4	GND	GND	Ground pin.
5	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
6	DIF_IN	IN	0.7 V Differential True input
7	DIF_IN\#	IN	0.7 V Differential Complementary Input
8	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
9	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
10	DFB_OUT_NC\#	OUT	Complementary half of differential feedback output, provides feedback signal to the PLL for synchronization with input clock to eliminate phase error. This pin should NOT be connected on the circuit board, the feedback is internal to the package.
11	DFB_OUT_NC	OUT	True half of differential feedback output, provides feedback signal to the PLL for synchronization with the input clock to eliminate phase error. This pin should NOT be connected on the circuit board, the feedback is internal to the package.
12	VDD	PWR	Power supply, nominal 3.3V
13	vOE0\#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
14	DIF_0	OUT	0.7V differential true clock output
15	DIF_0\#	OUT	0.7 V differential Complementary clock output
16	VDD	PWR	Power supply, nominal 3.3V
17	DIF_1	OUT	0.7V differential true clock output
18	DIF_1\#	OUT	0.7V differential Complementary clock output
19	vOE1\#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down. $1=$ disable outputs, $0=$ enable outputs
20	VDD	PWR	Power supply, nominal 3.3V
21	VDD	PWR	Power supply, nominal 3.3V
22	vOE2\#	IN	Active low input for enabling DIF pair 2. This pin has an internal pull-down. $1=$ disable outputs, $0=$ enable outputs
23	DIF_2	OUT	0.7V differential true clock output
24	DIF_2\#	OUT	0.7V differential Complementary clock output
25	VDD	PWR	Power supply, nominal 3.3V
26	DIF_3	OUT	0.7V differential true clock output
27	DIF_3\#	OUT	0.7V differential Complementary clock output
28	vOE3\#	IN	Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
29	VDD	PWR	Power supply, nominal 3.3V
30	NC	N/A	No Connection.
31	VDD	PWR	Power supply, nominal 3.3V
32	vOE4\#	IN	Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
33	DIF_4	OUT	0.7V differential true clock output
34	DIF_4\#	OUT	0.7 V differential Complementary clock output
35	VDD	PWR	Power supply, nominal 3.3V
36	DIF_5	OUT	0.7V differential true clock output
37	DIF_5\#	OUT	0.7V differential Complementary clock output
38	vOE5\#	IN	Active low input for enabling DIF pair 5. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
39	VDD	PWR	Power supply, nominal 3.3V
40	NC	N/A	No Connection.
41	EPAD	GND	Ground Pad.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT6V61036. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDD, VDDA, VDDR	VDD for core logic and PLL			4.6	V	1,2
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		GND-0.5			V	1
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Except for SMBus interface			$\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	V	1
Input High Voltage	$\mathrm{V}_{\text {IHSMB }}$	SMBus clock and data pins			5.5 V	V	1
Storage Temperature	Ts		-65		150	C	1
Junction Temperature	Tj				125	${ }^{\circ} \mathrm{C}$	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics-DIF_IN Clock Input Parameters

$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {сом }}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
NOTES						
Input Crossover Voltage - DIF_IN	$\mathrm{V}_{\text {CROss }}$	Cross Over Voltage	150		900	mV
Input Swing - DIF_IN	$\mathrm{V}_{\text {SWING }}$	Differential value	1			
Input Slew Rate - DIF_IN	$\mathrm{dv} / \mathrm{dt}$	Measured differentially	300			mV
Input Leakage Current	I_{IN}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$	1			
Input Duty Cycle	$\mathrm{d}_{\text {tin }}$	Measurement from differential wavefrom	45		8	$\mathrm{~V} / \mathrm{ns}$
Input Jitter - Cycle to Cycle	$\mathrm{J}_{\text {DIFIn }}$	Differential Measurement	0			

[^0]
Electrical Characteristics-Input/Supply/Common Parameters

$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Сом }}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	$\mathrm{T}_{\text {com }}$	Commmercial range	0	35	70	${ }^{\circ} \mathrm{C}$	1
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Single-ended inputs, except SMBus, Iow threshold and tri-level inputs	2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V	1
Input Low Voltage	VIL	Single-ended inputs, except SMBus, Iow threshold and tri-level inputs	GND - 0.3		0.8	V	1
	$\mathrm{I}_{\text {IN }}$	Single-ended inputs, $\mathrm{V}_{\text {IN }}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=$ VDD	-5		5	uA	1
Input Current	1 lnP	Single-ended inputs $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$; Inputs with internal pull-up resistors $\mathrm{V}_{\mathrm{IN}}=$ VDD; Inputs with internal pull-down resistors	-200		200	uA	1
Input Frequency	$\mathrm{F}_{\text {ibyp }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Bypass mode	1		150	MHz	2
Input Frequency	$\mathrm{F}_{\text {ipll }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 100 \mathrm{MHz} \mathrm{PLL} \mathrm{mode}$	90	100.00	110	MHz	2
Pin Inductance	Lpin				7	nH	1
	$\mathrm{C}_{\text {IN }}$	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	$\mathrm{C}_{\text {INDIF_IN }}$	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	Cout	Output pin capacitance			6	pF	1
Clk Stabilization	$\mathrm{T}_{\text {StAB }}$	From $V_{D D}$ Power-Up and after input clock stabilization or de-assertion of PD\# to 1st clock		0.53	1	ms	1,2
Input SS Modulation Frequency	$\mathrm{f}_{\text {MODIN }}$	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
OE\# Latency	$\mathrm{t}_{\text {Latoe }}$	DIF start after OE\# assertion DIF stop after OE\# deassertion	4	8	12	cycles	1,3
Tdrive_PD\#	$\mathrm{t}_{\text {DRVPD }}$	DIF output enable after PD\# de-assertion			300	us	1,3
Tfall	t_{F}	Fall time of control inputs			10	ns	1,2
Trise	t_{R}	Rise time of control inputs			10	ns	1,2
SMBus Input Low Voltage	$\mathrm{V}_{\text {ILSMB }}$				0.8	V	1
SMBus Input High Voltage	$\mathrm{V}_{\text {IHSMB }}$		2.1		$\mathrm{V}_{\text {DDSMB }}$	V	1
SMBus Output Low Voltage	$\mathrm{V}_{\text {OLSMB }}$	@ I ${ }_{\text {PULLUP }}$			0.4	V	1
SMBus Sink Current	$\mathrm{I}_{\text {PULUP }}$	@ V_{OL}	4			mA	1
Nominal Bus Voltage	$\mathrm{V}_{\text {DDSMB }}$	3 V to 5V +/-10\%	2.7		5.5	V	1
SCLK/SDATA Rise Time	$\mathrm{t}_{\text {RSMB }}$	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	$\mathrm{t}_{\text {FSMB }}$	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	$\mathrm{f}_{\text {MAXSMB }}$	Maximum SMBus operating frequency			100	kHz	1,5

[^1]
Electrical Characteristics-DIF 0.7V Low Power HCSL Outputs

$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {сом }}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1	2.9	4	V/ns	1, 2, 3
Slew rate matching	Δ Trf	Slew rate matching, Scope averaging on		7	20	\%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	660	754	850	mV	1
Voltage Low	VLow		-150	62	150		1
Max Voltage	Vmax	Measurement on single ended signal using absolute value. (Scope averaging off)		827	1150	mV	1
Min Voltage	Vmin		-300	10			1
Vswing	Vswing	Scope averaging off	300	1395		mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	300	453	550	mV	1,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		14	140	mV	1, 6

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production. $\mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}, \mathrm{Zo}=85 \Omega$ differential trace impedance).
${ }^{2}$ Measured from differential waveform
${ }^{3}$ Slew rate is measured through the Vswing voltage range centered around differential $0 V$. This results in $\mathrm{a}+/-150 \mathrm{mV}$ window around differential OV.
${ }^{4}$ Matching applies to rising edge rate for Clock and falling edge rate for Clock\#. It is measured using a $+/-75 \mathrm{mV}$ window centered on the average cross point where Clock rising meets Clock\# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
${ }^{5}$ Vcross is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock\# falling).
${ }^{6}$ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

Electrical Characteristics-Current Consumption

$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Com; }}$ Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Current	$\mathrm{I}_{\text {DDVDDR }}$	100 MHz , VDDR rail		4	6	mA	1
	$\mathrm{I}_{\text {DDVDDAPLL }}$	100MHz, VDDA rail, PLL Mode		14	20	mA	1
	$\mathrm{I}_{\text {DDVDDABYP }}$	100 MHz , VDDA rail, Bypass Mode		3	5	mA	1
	$\mathrm{I}_{\text {DDVDD }}$	100MHz, VDD rail		41	50	mA	1
Powerdown Current	$\mathrm{I}_{\text {DDVDDRPD }}$	Power Down, VDDR Rail		3.5	5	mA	1
	$\mathrm{I}_{\text {DDVDDAPD }}$	Power Down, VDDA Rail		1.6	3	mA	1
	$\mathrm{I}_{\text {DDVDDPD }}$	Power Down, VDD Rail		0.3	2	mA	1

[^2]
Electrical Characteristics-Skew and Differential Jitter Parameters

$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {сом }}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
CLK_IN, DIF[x:0]	$\mathrm{t}_{\text {SPO_PLL }}$	In-to-Out Skew in PLL mode @ 100MHz nominal value $@ 35^{\circ} \mathrm{C}, 3.3 \mathrm{~V}$	-100	53	100	ps	1,2,4,5,8	
CLK_IN, DIF[x:0]	$\mathrm{t}_{\text {PD_BYP }}$	In-to-Out Skew in Bypass mode @ 100MHz nominal value @ $35^{\circ} \mathrm{C}, 3.3 \mathrm{~V}$	2.5	3.4	4.5	ns	1,2,3,5,8	
CLK_IN, DIF[x:0]	$\mathrm{t}_{\text {DSPO_PLL }}$	In-to-Out Skew Varation in PLL mode across voltage and temperature	-50	0	50	ps	1,2,3,5,8	
CLK_IN, DIF[x:0]	t ${ }_{\text {DSPO_BYP }}$	In-to-Out Skew Varation in Bypass mode across voltage and temperature	-250	0	250	ps	1,2,3,5,8	
CLK_IN, DIF[x:0]	$\mathrm{t}_{\text {DTE }}$	Random Differential Tracking error beween two 9ZX devices in Hi BW Mode		3	5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,3,5,8	
CLK_IN, DIF[x:0]	$t_{\text {dSSte }}$	Random Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode		15	75	ps	1,2,3,5,8	
DIF\{x:0]	$\mathrm{t}_{\text {SKEW_ALL }}$	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)		39	65	ps	1,2,3,8	
PLL Jitter Peaking	jpeak-hibw	LOBW\#_BYPASS_HIBW = 1			2.5	dB	7,8	
PLL Jitter Peaking	jpeak-lobw	LOBW\#_BYPASS_HIBW = 0			2	dB	7,8	
PLL Bandwidth	pll ${ }_{\text {HIBW }}$	LOBW\#_BYPASS_HIBW = 1			4	MHz	8,9	
PLL Bandwidth	pll	LOBW\#_BYPASS_HIBW = 0			1.4	MHz	8,9	
Duty Cycle	$t_{\text {DC }}$	Measured differentially, PLL Mode	45	50.1	55	\%	1	
Duty Cycle Distortion	$t_{\text {DCD }}$	Measured differentially, Bypass Mode @100MHz		-1.7	\|2		\%	1,10
Jitter, Cycle to cycle		PLL mode		14	50	ps	1,11	
	$\mathrm{t}_{\text {jcyc-cyc }}$	Additive Jitter in Bypass Mode		0	25	ps	1,11	

Notes for preceding table:

${ }^{1} C_{\mathrm{L}}=2 \mathrm{pF}, \mathrm{Zo}=85 \Omega$ differential trace impedance. Input to output skew is measured at the first output edge following the corresponding input.
${ }^{2}$ Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
${ }^{3}$ All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
${ }^{4}$ This parameter is deterministic for a given device
${ }^{5}$ Measured with scope averaging on to find mean value.
${ }^{6} \cdot t$ is the period of the input clock
${ }^{7}$ Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
8. Guaranteed by design and characterization, not 100% tested in production.
${ }^{9}$ Measured at 3 db down or half power point.
${ }^{10}$ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.
${ }^{11}$ Measured from differential waveform

Electrical Characteristics-Phase Jitter Parameters

$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {сом }}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
Phase Jitter, PLL Mode	$\mathrm{t}_{\text {jphPCleG1 }}$	PCle Gen 1		43	46	86	ps (p-p)	1,2,3
	$\mathrm{t}_{\text {jphPCleG2 }}$	PCle Gen 2 Lo Band 10 kHz < $\mathrm{f}<1.5 \mathrm{MHz}$		1.4	1.5	3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{~ms}) \end{gathered}$	1,2
		$\begin{gathered} \text { PCle Gen } 2 \text { High Band } \\ 1.5 \mathrm{MHz}<\mathrm{f}<\text { Nyquist (} 50 \mathrm{MHz} \text {) } \end{gathered}$		2.4	2.7	3.1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \\ \hline \end{gathered}$	1,2
	$\mathrm{t}_{\text {jphPClea3 }}$	PCle Gen 3 $($ PLL BW of $2-4 \mathrm{MHz}, 2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz})$		0.56	0.61	1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,4
	$\mathrm{t}_{\text {jphQPI_SMI }}$	QPI \& SMI (PLL BW of $17.04 \mathrm{MHz} 100 / 133 \mathrm{MHz}, 4.8 \mathrm{~Gb} / \mathrm{s}$, $6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI}$)		0.27	0.51	1	$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \end{gathered}$	1,5
		QPI \& SMI (PLL BW of $7.8 \mathrm{MHz} \mathrm{100/133MHz,4.8Gb/s}$, $6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI})$		0.22	0.49	0.5	$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \end{gathered}$	1,5
		$\begin{gathered} \text { QPI \& SMI } \\ (100 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI}) \end{gathered}$		0.16	0.28	0.3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,5
		QPI \& SMI (100MHz, 9.6Gb/s, 12UI)		0.11	0.17	0.2	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,5
Additive Phase Jitter, Bypass mode	$\mathrm{t}_{\text {jphPCleG1 }}$	PCle Gen 1		1	5	N/A	ps (p-p)	1,2,3
	$\mathrm{t}_{\text {jphPCleG2 }}$	PCle Gen 2 Lo Band 10 kHz < $\mathrm{f}<1.5 \mathrm{MHz}$		0.0	0.0	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,6
		PCle Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz)		0.0	0.0	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,6
	$\mathrm{t}_{\text {jphPCleG3 }}$	PCle Gen 3 (PLL BW of $2-4 \mathrm{MHz}, 2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.0	0.0	N/A	$\begin{gathered} \hline \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,4,6
	$\mathrm{t}_{\text {jphQPI_SMI }}$	QPI \& SMI (PLL BW of $17.04 \mathrm{MHz} 100 / 133 \mathrm{MHz}, 4.8 \mathrm{~Gb} / \mathrm{s}$, $6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI}$)		0.25	0.3	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,5,6
		QPI \& SMI (PLL BW of $7.8 \mathrm{MHz} 100 / 133 \mathrm{MHz}, 4.8 \mathrm{~Gb} / \mathrm{s}$, $6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI}$)		0.10	0.15	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,5,6
		QPI \& SMI ($100 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI}$)		0.0	0.0	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,5,6
		QPI \& SMI $(100 \mathrm{MHz}, 9.6 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI})$		0.0	0.0	N/A	$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \end{gathered}$	1,5,6

[^3]
Clock Periods-Differential Outputs with Spread Spectrum Disabled

SSC OFF	Center Freq. MHz	Measurement Window							Units	Notes
		1 Clock	1us	0.15	0.15	0.15	1us	1 Clock		
		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	$+ \text { SSC }$ Short-Term Average Max	+c2c jitter AbsPer Max		
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2,3

Clock Periods-Differential Outputs with Spread Spectrum Enabled

SSC ON	Center Freq. MHz	Measurement Window							Units	Notes
		1 Clock	1us	0.15	0.15	0.1 s	1us	1 Clock		
		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max		
DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2,3

Notes:
${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements (+/-100ppm). The 6V61036 itself does not contribute to ppm error.
${ }^{3}$ Driven by SRC output of main clock, 100 MHz PLL Mode or Bypass mode

Test Loads

Differential Output Terminations

DIF Zo (Ω)	Rs (Ω)
100	7
85	0

Note: No resistors are required for connection to 850hm transmission lines.

General SMBus Serial Interface Information for IDT6V61036

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte \mathbf{N} through Byte $\mathrm{N}+\mathrm{X}-1$
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Index Block Write Operation		
Controller (Host)		IDT (Slave/Receiver)
T	starT bit	
Slave Address		
WR	WRite	
		ACK
Beginning Byte $=\mathrm{N}$		
		ACK
Data Byte Count $=\mathrm{X}$		
		ACK
Beginning Byte N		
		ACK
0		
0		0
0		0
		0
Byte N + X - 1		
		ACK
P	stoP bit	

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte \mathbf{X} (if $X_{(H)}$ was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
RT	Repeat starT		
Slave Address			
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
ACK			
			0
	0		0
0			0
0			
			Byte N + X - 1
N	Not acknowledge		
P	stoP bit		

SMBusTable: PLL Mode, and Frequency Select Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	2	PLL Mode 1	PLL Operating Mode Rd back 1	R	See PLL Operating Mode Readback Table		Latch
Bit 6	2	PLL Mode 0	PLL Operating Mode Rd back 0	R			Latch
Bit 5		Reserved					0
Bit 4		Reserved					0
Bit 3		PLL_SW_EN	Enable S/W control of PLL BW	RW	HW Latch	SMBus Control	0
Bit 2		PLL Mode 1	PLL Operating Mode 1	RW	See PLL Operating Mode Readback Table		1
Bit 1		PLL Mode 0	PLL Operating Mode 1	RW			1
Bit 0		Reserved					1

Note: Setting bit 3 to '1' allows the user to overide the Latch value from pin 5 via use of bits 2 and 1 . Use the values from the PLL Operating Mode Readback Table. Note that Bits 7 and 6 will keep the value originally latched on pin 5 . A warm reset of the system will have to accomplished if the user changes these bits.

SMBusTable: Output Control Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7		Reserved					1
Bit 6	26/27	DIF_3_En	Output Control - '0' overrides OE\# pin	RW	Low/Low	Enable	1
Bit 5	23/24	DIF_2_En	Output Control - '0' overrides OE\# pin	RW			1
Bit 4		Reserved					1
Bit 3		Reserved					1
Bit 2	17/18	DIF_1_En	Output Control - '0' overrides OE\# pin	RW	Low/Low	Enable	1
Bit 1	14/15	DIF_0_En	Output Control - '0' overrides OE\# pin	RW			1
Bit 0		Reserved					1

SMBusTable: Output Control Register

Byte 2	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7		Reserved					0
Bit 6		Reserved					0
Bit 5		Reserved					0
Bit 4		Reserved					0
Bit 3		Reserved					1
Bit 2	36/37	DIF_5_En	Output Control - '0' overrides OE\# pin	RW	/Low	Enable	1
Bit 1	33/34	DIF_4_En	Output Control - '0' overrides OE\# pin	RW	Low	Enable	1
Bit 0			Reserved				1

SMBusTable: Reserved Register

Byte	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				0
Bit 0			Reserved				0

SMBusTable: Reserved Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				0
Bit 0			Reserved				0

IDT6V61036
6-OUTPUT DB800ZL DERIVATIVE WITH INTEGRATED 85OHM TERMINATIONS

SMBusTable: Vendor \& Revision ID Register

	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	RID3	REVISION ID	R	A rev $=0000$		X
Bit 6	-	RID2		R			X
Bit 5	-	RID1		R			X
Bit 4	-	RID0		R			X
Bit 3	-	VID3	VENDOR ID	R	-	-	0
Bit 2	-	VID2		R	-	-	0
Bit 1	-	VID1		R	-	-	0
Bit 0	-	VIDO		R	-	-	1

SMBusTable: DEVICE ID

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-		Device ID 7 (MSB)	R	FB Hex		1
Bit 6	-		Device ID 6	R			1
Bit 5	-		Device ID 5	R			1
Bit 4	-		Device ID 4	R			1
Bit 3	-		Device ID 3	R			1
Bit 2	-		Device ID 2	R			0
Bit 1	-		Device ID 1	R			1
Bit 0	-		Device ID 0	R			1

SMBusTable: Byte Count Register

Byt	Pin \#	Name	Control Function	Type	0 1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4	-	BC4	Writing to this register configures how many bytes will be read back.	RW	Default value is 8 hex, so 9 bytes (0 to 8) will be read back by default.	0
Bit 3	-	BC3		RW		1
Bit 2	-	BC2		RW		0
Bit 1	-	BC1		RW		0
Bit 0	-	BC0		RW		0

SMBusTable: Reserved Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				0
Bit 0			Reserved				0

Marking Diagram

Notes:

1. "G" denotes RoHS compliant package.
2. "YYWW" is the last two digits of the year and week that the part was assembled.
3. "\$" denotes mark code.
4. 'LOT' denotes the lot number.

IDT6V61036
6-OUTPUT DB800ZL DERIVATIVE WITH INTEGRATED 85OHM TERMINATIONS

Package Outline and Package Dimensions (NDG40)

Package dimensions are kept current with JEDEC Publication No. 95

TDP VIEW

BOTTDM VIEW

	DIMENSION		
	MIN	NOM	MAX
b	0.15	0.20	0.25
D	5.00 BSC		
E	5.00 BSC		
D2	3.40	3.50	3.60
E2	3.40	3.50	3.60
L	0.30	0.40	0.50
e	0.40 BSC		
N	40		
ND	10 (note 3)		
NE	10 (note 3)		
A	0.80		1.00
A1	0.00	0.02	0.05
A3	0.2 REF		
k	0.35		
ооо	0.10		
bbb	0.07		
ccc	0.10		
ddd	0.05		
eee	0.08		
fff	0.10		

SIDE VIEW

NUTES:

1. ALL DIMENSICNING AND TQLERANCING CUNFロRM TD ANSI Y14.5M-1982
2 ALL DIMENSIDNS ARE IN MILLIMETERS.
2. ND AND NE REFER TZ THE NUMBER DF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.

Ordering Information

Part / Order Number	Shipping Package	Package	Temperature
$6 V 61036 N D G$	Trays	$40-$ pin VFQFPN	0 to $+70^{\circ} \mathrm{C}$
6 V 61036 NDG8	Tape and Reel	$40-$ pin VFQFPN	0 to $+70^{\circ} \mathrm{C}$

"G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Issuer	Issue Date	Description	Page \#
A	RDW	$12 / 11 / 2012$	Initial release	Various
B	RDW	$3 / 31 / 2014$	Update electrical tables per latest characterization data.	11
C	RDW	$11 / 25 / 2014$	1. Updates to Byte 6, bits 7:4; default should be "1". 2. Updated device ID in Byte 6 from "8B" to "FB".	(. Corrected Test Loads to remove references to IREF and Rp. These are not present on parts that have LP-HCSL outputs.
D	RDW	$3 / 30 / 2015$	9	
E	RDW	$11 / 20 / 2015$	1. Updated QPI references to QPI/UPI 2. Updated DIF_IN table to match PCI SIG specification, no silicon change	1,4

w w w.IDT.com

For Sales
800-345-7015
408-284-8200
Fax: 408-284-2775

For Tech Support
www.idt.com/go/clockhelp
pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0
CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 6ES7231-4HD32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9513BCPZ AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI

[^0]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ Slew rate measured through $+/-75 \mathrm{mV}$ window centered around differential zero

[^1]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ Control input must be monotonic from 20% to 80% of input swing.
 ${ }^{3}$ Time from deassertion until outputs are $>200 \mathrm{mV}$
 ${ }^{4}$ DIF IN input
 ${ }^{5}$ The differential input clock must be running for the SMBus to be active

[^2]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2} C_{L}=2 p F, Z o=85 \Omega$ differential trace impedance

[^3]: ${ }^{1}$ Applies to all outputs.
 ${ }^{2}$ See http://www.pcisig.com for complete specs
 ${ }^{3}$ Sample size of at least 100 K cycles. This figures extrapolates to 108 ps pk -pk @ 1 M cycles for a BER of 1-12.
 ${ }^{4}$ Subject to final ratification by PCI SIG.
 ${ }^{5}$ Calculated from Intel-supplied Clock Jitter Tool
 ${ }^{6}$ For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter) ${ }^{\wedge} 2=(\text { total jitter) })^{\wedge} 2-\left(\right.$ input jitter) $\wedge^{\wedge} 2$

