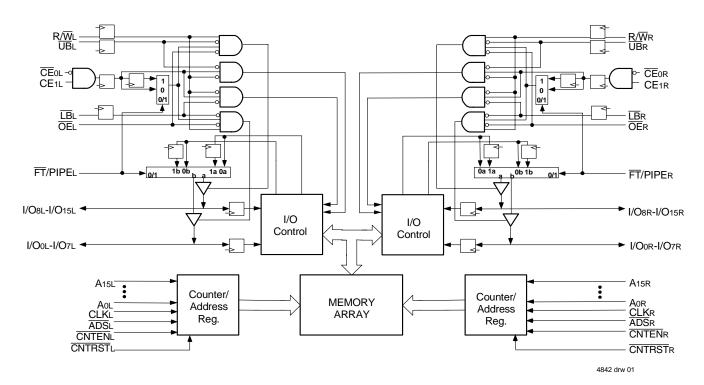


HIGH-SPEED 64K x 16 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM

IDT709289L

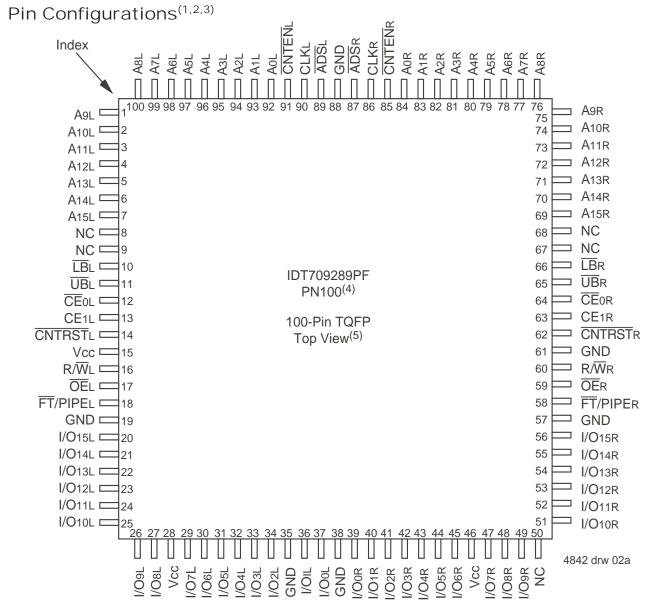

LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018

Features

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- High-speed clock to data access
 - Commercial: 7.5/9/12ns (max.)
 - Industrial: 9ns (max.)
- Low-power operation
 - IDT709289LActive: 1.2W (typ.)
 - Standby: 2.5mW (typ.)
- Flow-Through or Pipelined output mode on either Port via the FT/PIPE pins
- Counter enable and reset features
- Dual chip enables allow for depth expansion without additional logic

- Full synchronous operation on both ports
 - 4ns setup to clock and Ons hold on all control, data, and address inputs
 - Data input, address, and control registers
 - Fast 7.5ns clock to data out in the Pipelined output mode
 - Self-timed write allows fast cycle time
 - 12ns cycle time, 83MHz operation in Pipelined output mode
- Separate upper-byte and lower-byte controls for multiplexed bus and bus matching compatibility
- * TTL- compatible, single 5V (±10%) power supply
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Available in a 100-pin Thin Quad Flatpack (TQFP) package
- Green parts available, see ordering information

Functional Block Diagram



FEBRUARY 2018

Description

The IDT709289 is a high-speed 64K x 16 bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times.

With an input data register, the IDT709289 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by \overline{CE} 0 and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. Fabricated using CMOS high-performance technology, these devices typically operate on only 1.2W of power.

- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground.
- 3. Package body is approximately 14mm x 14mm x 1.4mm
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names
CEOL, CE1L	CEOR, CE1R	Chip Enables
R/\overline{W}_L	R/W̄R	Read/Write Enable
ŌĒL	OE R	Output Enable
A0L - A15L	A0R - A15R	Address
I/O0L - I/O15L	I/Oor - I/O15R	Data Input/Output
CLKL	CLKR	Clock
ŪB∟	UB R	Upper Byte Select
ŪB∟	LB R	Lower Byte Select
ADS _L	ADS R	Address Strobe
CNTENL	<u>CNTEN</u> R	Counter Enable
CNTRSTL	<u>CNTRST</u> _R	Counter Reset
FT/PIPEL	FT/PIPER	Flow-Through/Pipeline
V	cc	Power
G	ND	Ground

4842 tbl 01

Truth Table I—Read/Write and Enable Control(1,2,3)

ŌĒ	CLK	Œ	CE ₁	ШВ	Ш	R/W	Upper Byte I/O ₈₋₁₅	Lower Byte I/O ₀₋₇	Mode
Х	1	Н	Χ	Χ	Χ	Χ	High-Z	High-Z	Deselected—Power Down
Х	1	Χ	L	Χ	Χ	Χ	High-Z	High-Z	Deselected—Power Down
Х	1	L	Н	Н	Н	Χ	High-Z	High-Z	Both Bytes Deselected
Х	1	L	Н	L	Н	L	DATAIN	High-Z	Write to Upper Byte Only
Х	1	L	Н	Н	L	L	High-Z	DATAIN	Write to Lower Byte Only
Х	1	L	Н	L	L	L	DATAIN	DATAIN	Write to Both Bytes
L	1	L	Н	L	Н	Н	DATAout	High-Z	Read Upper Byte Only
L	1	L	Н	Н	L	Н	High-Z	DATAout	Read Lower Byte Only
L	1	L	Н	L	L	Н	DATAout	DATAout	Read Both Bytes
Н	Х	L	Н	L	L	Х	High-Z	High-Z	Outputs Disabled

NOTES:

1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. ADS, CNTEN, CNTRST = X.

3. $\overline{\text{OE}}$ is an asynchronous input signal.

4842 tbl 02

Truth Table II—Address Counter Control(1,2,6)

Address	Previous Address	Addr Used	CLK	ĀDS	CNTEN	CNTRST	I/O ⁽³⁾	Mode
Х	Х	0	1	Χ	Х	L	Dvo(0)	Counter Reset to Address 0
An	Х	An	1	L ⁽⁴⁾	Χ	Н	DVO(n)	External Address Loaded into Counter
An	Ар	Ар	1	Н	Н	Н	Dvo(p)	External Address Blocked—Counter Disabled (Ap reused)
Х	Ар	Ap + 1	1	Н	L ⁽⁵⁾	Н	Dvo(p+1)	Counter Enable—Internal Address Generation

NOTES:

NOTES:

4842 tbl 03

- 1. "H" = VIH, "L" = VIL, "X" = Don't Care.
- 2. \overline{CE}_0 , \overline{LB} , \overline{UB} , and \overline{OE} = VIL; CE1 and R/ \overline{W} = VIH.
- 3. Outputs configured in Flow-Through Output mode: if outputs are in Pipelined mode the data out will be delayed by one cycle.
- 4. \overline{ADS} is independent of all other signals including \overline{CE}_0 , \overline{CE}_1 , \overline{UB} and \overline{LB} .
- 5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other signals including CE₀, CE₁, UB and LB.
- 6. While an external address is being loaded $(\overline{ADS} = V_{IL})$, $R/\overline{W} = V_{IH}$ is recommended to ensure data is not written arbitrarily.

Recommended Operating Temperature and Supply Voltage

Grade	Ambient Temperature ⁽²⁾	GND	Vcc
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%

4842 tbl

1. This is the parameter Ta. This is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	٧
GND	Ground	0	0	0	٧
VIH	Input High Voltage	2.2		6.0 ⁽¹⁾	٧
VIL	Input Low Voltage	-0.5 ⁽²⁾	_	0.8	V

4842 tbl 05

NOTES:

- 1. VTERM must not exceed Vcc + 10%.
- 2. VIL \geq -1.5V for pulse width less than 10ns.

Absolute Maximum Ratings(1)

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	>
TBIAS	Temperature Under Bias	-55 to +125	ç
Tstg	Storage Temperature	-65 to +150	°C
ЮИТ	DC Output Current	50	mA

NOTES: 4842 tbl 06

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc + 10%.

Capacitance⁽¹⁾

 $(TA = +25^{\circ}C, f = 1.0MHz)$

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	9	pF
Соит ⁽³⁾	Output Capacitance	Vout = 3dV	10	pF

NOTES:

4842 thl 07

- These parameters are determined by device characterization, but are not production tested.
- 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.
- 3. Cout also references Ci/o.

4842 tbl 08

4842 tbl 09

DC Electrical Characteristics Over the Operating Temperature Supply Voltage Range (Vcc = 5.0V ± 10%)

			7092		
Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Iu	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, $VIN = 0V$ to Vcc	_	5	μΑ
ILO	Output Leakage Current	CE0 = VIH or CE1 = VIL, VOUT = 0V to VCC	_	5	μΑ
Vol	Output Low Voltage	IoL = +4mA	_	0.4	V
Voh	Output High Voltage	Iон = -4mA	2.4	_	V

NOTE

1. At Vcc ≤ 2.0V input leakages are undefined.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽³⁾ ($Vcc = 5V \pm 10\%$)

·			_				7092 Com'l		7092 Coi & I	m'l	70928 Com'l		
Symbol	Parameter	Test Condition	Versi	on	Typ. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Unit		
Icc	Dynamic Operating Current	CEL and CER= VIL	COM'L	L	275	465	250	400	230	355	mA		
	(Both Ports Active)	Outputs Disabled f = fMAX ⁽¹⁾	IND	L	_	_	300	430	_	_			
ISB1	Standby Current	CEL = CER = VIH	COM'L	L	95	150	80	135	70	110	mA		
	(Both Ports - TTL Level Inputs)	$f = fMAX^{(1)}$	IND	L	_	_	95	160	_	_			
ISB2	Standby Current CE"A" = VIL and		COM'L	L	200	295	175	275	150	240	mA		
	(One Port - TTL Level Inputs)	CE"B" = VIH ⁽³⁾ Active Port Outputs Disabled, f=fMAX ⁽¹⁾	IND	L	_	_	195	295	_	_			
ISB3	Full Standby Current	Both Ports CER and	COM'L	L	0.5	3.0	0.5	3.0	0.5	3.0	mA		
(Both Port	CMOS Level Inputs)	S) $CEL \ge VCC - 0.2V$ $VIN \ge VCC - 0.2V$ or $VIN \le 0.2V$, $f = 0^{(2)}$	IND	L	1		0.5	6.0					
ISB4	Full Standby Current	\overline{CE} "A" $\leq 0.2V$ and	COM'L	L	190	290	170	270	140	225	mA		
	(One Port - CMOS Level Inputs)	$\begin{array}{l} \overline{\text{CE}'B''} \geq V\text{CC} - 0.2V^{(5)} \\ \text{VIN} \geq V\text{CC} - 0.2V \text{ or} \\ \text{VIN} \leq 0.2V, \text{ Active Port} \\ \text{Outputs Disabled, } f = \text{fMAX}^{(1)} \end{array}$	IND	L	-	_	190	290	_	_			

NOTES:

- 1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcvc, using "AC TEST CONDITIONS" at input levels of GND to 3V.
- 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.
- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 4. Vcc = 5V, TA = 25°C for Typ, and are not production tested. lcc pc(f=0) = 150mA (Typ).
- 5. $\overline{CE}x = VIL \text{ means } \overline{CE}_0x = VIL \text{ and } CE_1x = VIH$
 - $\overline{CE}x = VIH \text{ means } \overline{CE}0x = VIH \text{ or } CE1x = VIL$
 - $\overline{\text{CE}}\text{x} \leq 0.2\text{V}$ means $\overline{\text{CE}}\text{ox} \leq 0.2\text{V}$ and $\text{CE}\text{1x} \geq \text{Vcc} 0.2\text{V}$
 - $\overline{\text{CE}}$ x \geq Vcc 0.2V means $\overline{\overline{\text{CE}}}$ 0x \geq Vcc 0.2V or CE1x \leq 0.2V
 - "X" represents "L" for left port or "R" for right port.

5

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1,2 and 3

4842 tbl 10

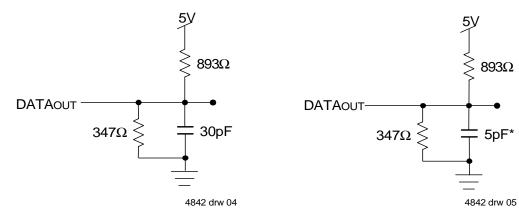


Figure 1. AC Output Test load.

Figure 2. Output Test Load (For tcкLz, tcкнz, toLz, and toнz). *Including scope and jig.

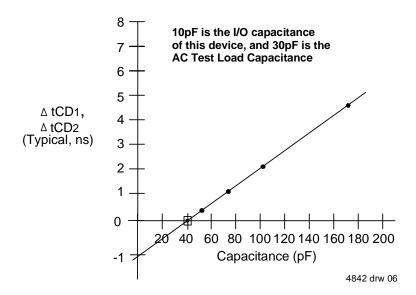
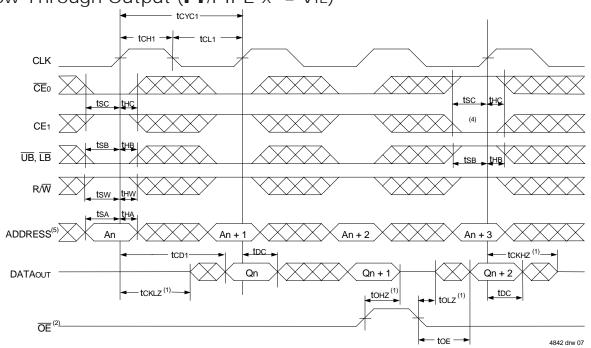


Figure 3. Typical Output Derating (Lumped Capacitive Load).

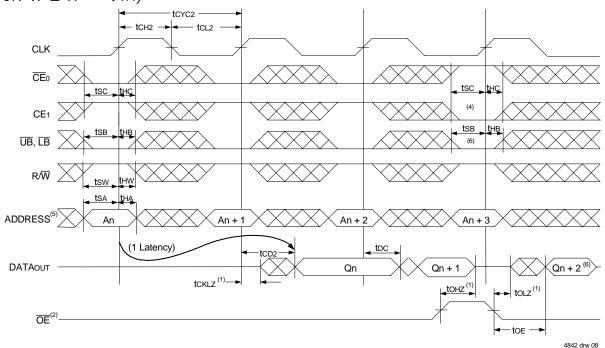
AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) $^{(3)}$ (Vcc = 5V ± 10%, TA = 0°C to +70°C)

	and write cycle mining) (v	70	9289L7 m'l Only	709: Co	709289L9 Com'l & Ind		709289L12 Com'l Only	
Symbol	Parameter	Min.	Мах.	Min.	Max.	Min.	Мах.	Unit
tcyc1	Clock Cycle Time (Flow-Through) ⁽²⁾	22		25		30	_	ns
tcyc2	Clock Cycle Time (Pipelined) ⁽²⁾	12		15		20	_	ns
tcH1	Clock High Time (Flow-Through) ⁽²⁾	7.5		12		12	_	ns
ta_1	Clock Low Time (Flow-Through) ⁽²⁾	7.5		12		12	_	ns
tcH2	Clock High Time (Pipelined) ⁽²⁾	5		6		8	_	ns
ta_2	Clock Low Time (Pipelined) ⁽²⁾	5		6		8	_	ns
tr	Clock Rise Time		3	_	3		3	ns
tr	Clock Fall Time		3	_	3	_	3	ns
tsa	Address Setup Time	4	_	4	_	4	_	ns
tha	Address Hold Time	0	_	1	_	1	_	ns
tsc	Chip Enable Setup Time	4	_	4		4	_	ns
thc	Chip Enable Hold Time	0	_	1		1	_	ns
tsB	Byte Enable Setup Time	4		4		4	_	ns
tнв	Byte Enable Hold Time	0		1		1	_	ns
tsw	R/W Setup Time	4		4		4	_	ns
thw	R/W Hold Time	0		1		1	_	ns
tsp	Input Data Setup Time	4		4		4	_	ns
thd	Input Data Hold Time	0		1		1	_	ns
tsad	ADS Setup Time	4		4		4	_	ns
thad	ADS Hold Time	0	_	1	_	1	_	ns
tscn	CNTEN Setup Time	4	_	4		4	_	ns
thon	CNTEN Hold Time	0	_	1		1	_	ns
tsrst	CNTRST Setup Time	4	_	4		4	_	ns
thrst	CNTRST Hold Time	0	_	1		1	_	ns
toe	Output Enable to Data Valid		9	_	12		12	ns
tolz	Output Enable to Output Low-Z ⁽¹⁾	2	_	2		2	_	ns
tонz	Output Enable to Output High-Z ⁽¹⁾	1	7	1	7	1	7	ns
tcD1	Clock to Data Valid (Flow-Through)(2)		18	_	20		25	ns
tCD2	Clock to Data Valid (Pipelined) ⁽²⁾		7.5	_	9		12	ns
toc	Data Output Hold After Clock High	2	_	2	_	2	_	ns
tckhz	Clock High to Output High-Z ⁽¹⁾	2	9	2	9	2	9	ns
tcklz	Clock High to Output Low-Z ⁽¹⁾	2	_	2		2	_	ns
Port-to-Port [<u>I</u>		L	L	L		
tcwdd	Write Port Clock High to Read Data Delay	_	28	_	35		40	ns
tocs	Clock-to-Clock Setup Time		10	_	15		15	ns

NOTES:

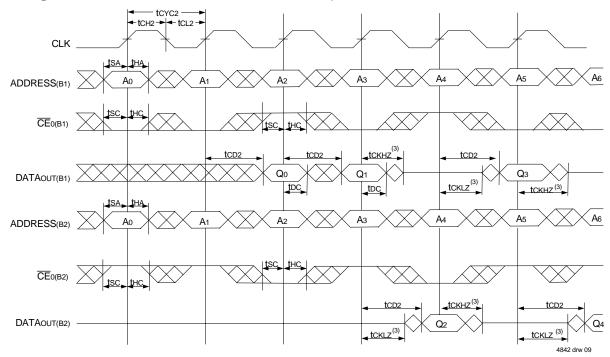

4842 tbl 11

^{1.} Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested.

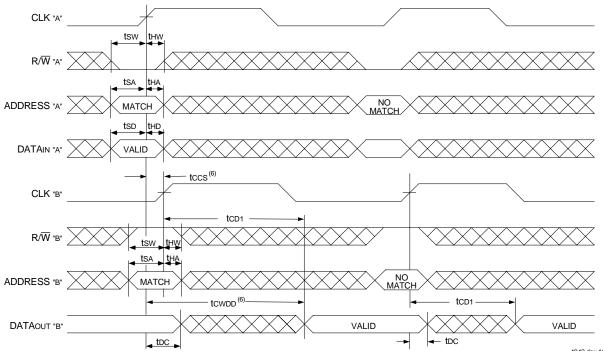

^{2.} The Pipelined output parameters (tcyc2, tcb2) to either the Left or Right ports when FT/PIPE = ViH. Flow-Through parameters (tcyc1, tcb1) apply when FT/PIPE = ViL for that port.

^{3.} All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPER and FT/PIPEL.

Timing Waveform of Read Cycle for Flow-Through Output (**FT**/PIPE"x" = VIL)(3,7)

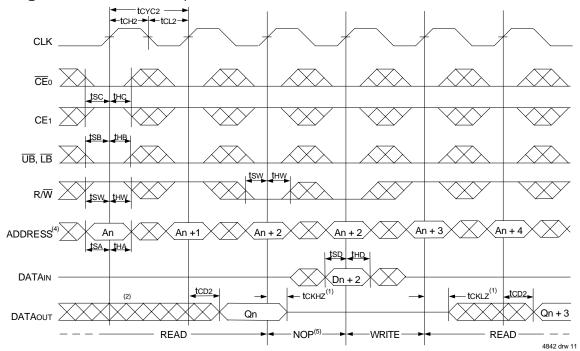


Timing Waveform of Read Cycle for Pipelined Operation $(\overline{FT}/PIPE"x" = VIH)^{(3,7)}$

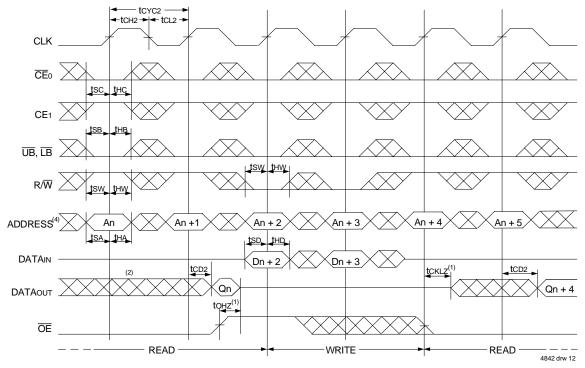


- NOTES:
- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. $\overline{\text{OE}}$ is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
- 3. $\overline{ADS} = V_{IL}$, \overline{CNTEN} and $\overline{CNTRST} = V_{IH}$.
- 4. The output is disabled (High-Impedance state) by CEo = VIH, CE1 = VIL, UB = VIH, or LB = VIH following the next rising edge of the clock. Refer to Truth Table 1.
- 5. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 6. If $\overline{\sf UB}$ or $\overline{\sf LB}$ was HIGH, then the Upper Byte and/or Lower Byte of DATAout for Qn + 2 would be disabled (High-Impedance state).
- 7. "X" here denotes Left or Right port. The diagram is with respect to that port.

Timing Waveform of a Bank Select Pipelined Read (1,2)

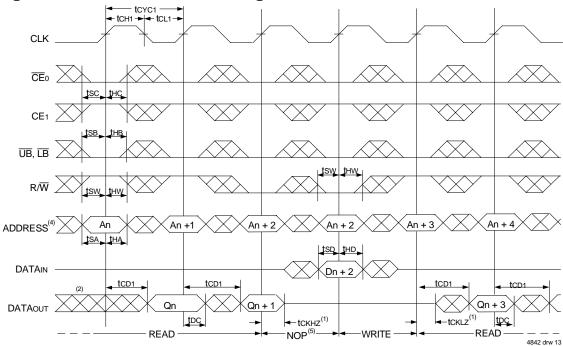


Timing Waveform of Write with Port-to-Port Flow-Through Read^(4,5,7)

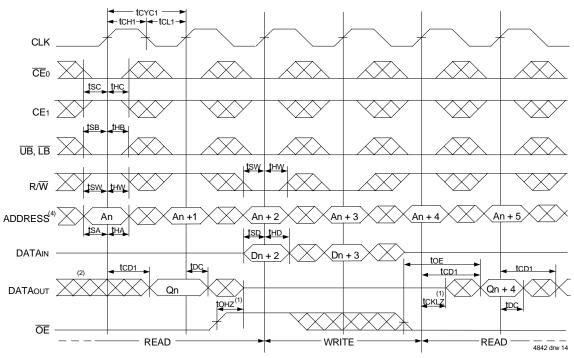


- 1. B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT709289 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.
- 2. $\overline{\text{UB}}$, $\overline{\text{LB}}$, $\overline{\text{OE}}$, and $\overline{\text{ADS}}$ = VIL; CE1(B1), CE1(B2), R/ $\overline{\text{W}}$, $\overline{\text{CNTEN}}$, and $\overline{\text{CNTRST}}$ = VIH.
- 3. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 4. \overline{CE}_0 , \overline{UB} , \overline{LB} , and $\overline{ADS} = VIL$; CE1, \overline{CNTEN} , and $\overline{CNTRST} = VIH$.
- 5. $\overline{OE} = V_{IL}$ for the Right Port, which is being read from. $\overline{OE} = V_{IH}$ for the Left Port, which is being written to.
- If tccs ≤ maximum specified, then data from right port READ is not valid until the maximum specified for tcwbb.
 If tccs > maximum specified, then data from right port READ is not valid until tccs + tcb1. tcwbb does not apply in this case.
- 7. All timing is the same for both Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite from Port "A".

Timing Waveform of Pipelined Read-to-Write-to-Read (**OE** = VIL)(3)



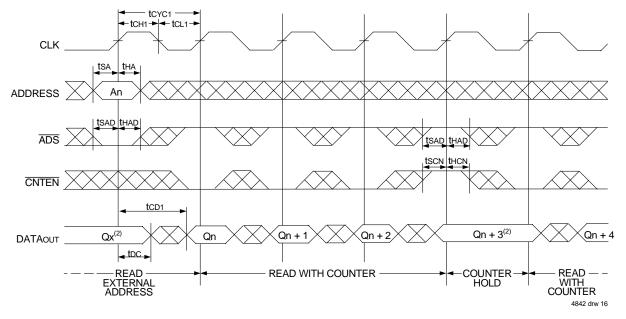
Timing Waveform of Pipelined Read-to-Write-to-Read (**OE** Controlled)⁽³⁾



- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 3. $\overline{\text{CE}}_0$, $\overline{\text{UB}}$, $\overline{\text{LB}}$, and $\overline{\text{ADS}} = \text{VIL}$; $\overline{\text{CE}}_1$, $\overline{\text{CNTEN}}$, and $\overline{\text{CNTRST}} = \overline{\text{VIH}}$. "NOP" is "No Operation".
- 4. Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{1L}$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

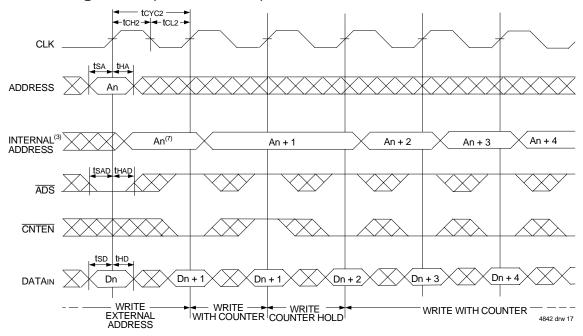
Timing Waveform of Flow-Through Read-to-Write-to-Read (**OE** = VIL)(3)

Timing Waveform of Flow-Through Read-to-Write-to-Read (**OE** Controlled)⁽³⁾

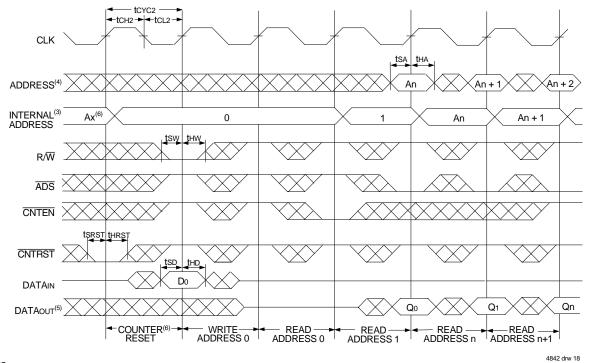


- 1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. <u>Output state</u> (High, Low, or High-impedance is determined by the previous cycle control signals.
- 3. $\overline{\text{CE}}_0$, $\overline{\text{UB}}$, $\overline{\text{LB}}$, and $\overline{\text{ADS}} = \text{VIL}$; $\overline{\text{CE}}_1$, $\overline{\text{CNTEN}}$, and $\overline{\text{CNTRST}} = \overline{\text{VIH}}$. "NOP" is "No Operation".
- 4. Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{1L}$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾



Timing Waveform of Flow-Through Read with Address Counter Advance⁽¹⁾



- 1. $\overline{\text{CE}}_0$, $\overline{\text{OE}}$, $\overline{\text{UB}}$, and $\overline{\text{LB}} = \text{ViL}$; CE_1 , $\overline{\text{R/W}}$, and $\overline{\text{CNTRST}} = \text{ViH}$.
- 2. If there is no address change via $\overline{ADS} = VIL$ (loading a new address) or $\overline{CNTEN} = VIL$ (advancing the address), i.e. $\overline{ADS} = VIH$ and $\overline{CNTEN} = VIH$, then the data output remains constant for subsequent clocks.

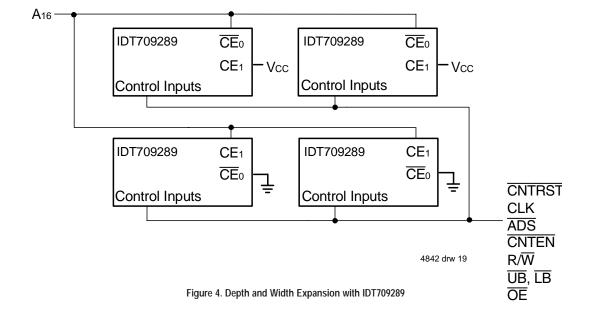
Timing Waveform of Write with Address Counter Advance (Flow-Through or Pipelined Outputs)⁽¹⁾

Timing Waveform of Counter Reset (Pipelined Outputs)(2)

- \overline{CE}_0 , \overline{UB} , \overline{LB} , and $R/\overline{W} = V_{IL}$; CE_1 and $\overline{CNTRST} = V_{IH}$.
- 2. \overline{CE}_0 , \overline{UB} , \overline{LB} = VIL; CE1 = VIH.
- 3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.
- 4. Addresses do not have to be accessed sequentially since $\overline{ADS} = VIL$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 6. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset cycle.
- 7. CNTEN = V_{IL} advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. The 'An +1' Address is written to during this cycle.

A Functional Description

The IDT709289 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal.


An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications.

 $\overline{\text{CE}}_0 = \text{VIH}$ or CE1 = VIL for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT709289's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with $\overline{\text{CE}}_0 = \text{VIL}$ and CE1 = VIH to reactivate the outputs.

Depth and Width Expansion

The IDT709289 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth.

The 709289 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 32-bit or wider applications.

Ordering Information

NOTES:

- 1. Industrial temperature range is available. For specific speeds, packages and powers contact your sales office.
- Green parts available. For specific speeds, packages and powers contact your local sales office.
 LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice PDN# SP-17-02

Datasheet Document History

9/30/99: Initial Public Release 11/10/99: Replaced IDT logo

12/22/99: Page 1 Added missing diamond

1/5/01: Page 4 Changed information in Truth Table II

Increased storage temperature parameter

Clarified TA parameter

Page 5 DC Electrical parameters-changed wording from "open" to "disabled"

Changed ±200mV to 0mV in notes

Removed Preliminary specification

10/18/01: Page 2 Added date revision for pin configuration

Page 5 & 7 Added Industrial temp to column heading and values for 9ns speed to DC & AC Electrical Characteristics

Page 15 Added Industrial temp offering to 9ns ordering information Page 4, 5 & 7 Removed Industrial temp footnote from all tables

Page 1 & 15 Replace ™ logo with ® logo

Datasheet Document History (con't on next page)

Datasheet Document History

05/05/06: Page 1 Added green availability to features

Page 15 Added green indicator to ordering information

01/19/09: Page 15 Removed "IDT" from orderable part number Page 2 Removed IDTin reference to fabrication 02/27/15:

Page 2 Removed date from PN100 pin configuration

Page 2&15The package code PN100-1 changed to PN100 to match standard package codes,

Page 6 Removed typo from typical output derating drawing Page 15 Added Tape & Reel to the Ordering Information

02/26/18: Product Discontinuation Notice - PDN# SP-17-02

Last time buy expires June 15, 2018

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

CY6116A-35DMB CY7C1049GN-10VXI GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2#AA0 IDT70V5388S166BG
IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC
AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI
IS66WVE2M16ECLL-70BLI IS66WVE4M16EALL-70BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KVE33133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8866201YA 5962-8866204TA 5962-9062007MXA 59629161705MXA GS882Z18CD-150I 8413202RA 5962-8866203YA IS61WV102416DBLL-10BLI CY7C1380KV33-250AXC AS6C801655BINTR GS81284Z18B-250I AS7C34096B-10TIN GS84018CB-200I IS62WV25616EALL-55TLI IS61WV204816BLL-10TLI
GS8128418B-167IV CY7C1460KV25-200BZXI CY7C1315KV18-333BZXC CY62157G30-45ZSXI 71V016SA12YG CY62126EV18LL70BVXI CY62128ELL-45SX CY62146EV30LL-45ZSXA CY7C1380KV33-167AXC