

Functional Block Diagram

2720 drw 01

7134SA/LA High-Speed 4K x 8 Dual-Port Static SRAM

Description

The IDT7134 is a high-speed 4K x 8 Dual-Port Static RAM designed to be used in systems where on-chip hardware port arbitration is not needed. This part lends itself to those systems which cannot tolerate wait states or are designed to be able to externally arbitrate or withstand contention when both sides simultaneously access the same Dual-Port RAM location.

The IDT7134 provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. It is the user's responsibility to ensure data integrity when simultaneously accessing the same memory location from both ports. An automatic power down feature, controlled by \overline{CE} , permits the on-chip circuitry of each port to enter a very low standby power mode.

Fabricated using CMOS high-performance technology, these Dual-Ports typically operate on only 700mW of power. Low-power (LA) versions offer battery backup data retention capability, with each port typically consuming 200µW from a 2V battery.

The IDT7134 is packaged in either a sidebraze or plastic 48-pin DIP, 48-pin LCC, 52-pin PLCC and 48-pin Flatpack. Military grade product is manufactured in compliance with MIL-PRF-38535 QML, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Pin Configurations^(1,2,3)

2720 drw 02a

NOTES:

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- PDG48 package body is approximately .55 in x 2.43 in x .18 in. SB48 package body is approximately .62 in x 2.43 in x .15 in. PLG52 package body is approximately .75 in x .75 in x .17 in.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of actual part-marking.

Pin Configurations ^(1,2,3)(con't.)

- 1. All Vcc pins must be connected to the power supply.
- 2. All GND pins must be connected to the ground supply.
- 3. LC48 package body is approximately .57 in x .57 in x .68 in.
- FP48 package body is approximately .75 in x .75 in x .11 in. 4. This package code is used to reference the package diagram.

7134SA/LA High-Speed 4K x 8 Dual-Port Static SRAM

Military, Industrial and Commercial Temperature Ranges

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Military	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
Tbias	Temperature Under Bias	-55 to +125	-65 to +135	°C
Tstg	Storage Temperature	-65 to +150	-65 to +150	۰C
Рт ⁽³⁾	Power Dissipation	1.5	1.5	W
Ιουτ	DC Output Current	50	50	mA
				2720 tbl 01

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10 ns maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc +10%.

3. VTERM = 5.5V.

Capacitance⁽¹⁾ (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
Cin	Input Capacitance	VIN = 3dV	11	pF
Соит	Output Capacitance	Vout = 3dV	11	pF
				2720 thl 02

NOTES:

1. This parameter is determined by device characterization but is not production tested.

3dV references the interpolated capacitance when the input and output signals switch from 0V to 3V and from 3V to 0V.

Recommended Operating Temperature and Supply Voltage^(1,2)

Grade	Ambient Temperature	GND	Vcc
Military	-55°C to +125°C	0V	5.0V <u>+</u> 10%
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%

NOTES:

1. This is the parameter TA. This is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit	
Vcc	Supply Voltage	4.5	5.0	5.5	V	
GND	Ground	0	0	0	V	
Vih	Input High Voltage	2.2		6.0 ⁽²⁾	V	
VIL	Input Low Voltage	-0.5(1)		0.8	V	
27						

NOTES:

1. VIL (min.) \geq -1.5V for pulse width less than 10ns.

2. VTERM must not exceed Vcc + 10%.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 5V ± 10%)

			7134SA		7134LA		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Мах.	Unit
Lu	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, VIN = 0V to Vcc		10		5	μA
Ilo	Output Leakage Current	\overline{CE} - VIH, VOUT = OV to VCC		10	—	5	μA
Vol	Output Low Voltage	Iol = 6mA	_	0.4	—	0.4	V
		Iol = 8mA		0.5	—	0.5	V
Vон	Output High Voltage	Іон = -4mA	2.4	-	2.4	_	V

NOTES:

1. At Vcc < 2.0V input leakages are undefined.

2720 tbl 05

2720 tbl 03

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range $^{(1,2)}$ (Vcc = 5.0V \pm 10%)

						7134X20 Com'l Only		7134X25 om'l & Ind		7134X35 Com'l & Military	
Symbol	Parameter	Test Condition	Versi	on	Тур.	Max.	Тур.	Мах.	Тур.	Мах.	Unit
lcc	Dynamic Operating Current (Roth Ports Activo)	CE = VIL Outputs Disabled	COM'L	SA LA	170 170	280 240	160 160	280 220	150 150	260 210	mA
(Boin Pons Acive)	$f = TMAX^{(5)}$	MIL & IND	SA LA			160 160	310 260	150 150	300 250		
ISB1	Standby Current (Both Ports - TTL	$\overline{CE}L \text{ and } \overline{CE}R = VIH f = f_{MAX}^{(3)}$	COM'L	SA LA	25 25	100 80	25 25	80 50	25 25	75 45	mA
	Level inpuls)		MIL & IND	SA LA			25 25	100 80	25 25	75 55	
ISB2	Standby Current (One Port - TTL	$\overline{CE}^*A^* = VIL$ and $\overline{CE}^*B^* = VIH$ Active Port Outputs Disabled,	COM'L	SA LA	105 105	180 150	95 95	180 140	85 85	170 130	mA
	Level inpuis)	T=IMAX**	MIL & IND	SA LA	_		95 95	210 170	85 85	200 160	
ISB3	Full Standby Current (Both Ports -	Both Ports $\overline{CE}L$ and $\overline{CE}R \ge Vcc - 0.2V$	COM'L	SA LA	1.0 0.2	15 4.5	1.0 0.2	15 4.0	1.0 0.2	15 4.0	mA
CMOS Level inpuis)	$VIN \ge VCC - 0.2V \text{ of}$ $VIN \le 0.2V, f = 0^{(3)}$	MIL & IND	SA LA			1.0 0.2	30 10	1.0 0.2	30 10		
ISB4	Full Standby Current (One Port -	One Port \overline{CE}^* or $\overline{CE}^*B^* \ge Vcc - 0.2V$	COM'L	SA LA	105 105	170 130	95 95	170 120	85 85	160 110	mA
	Civios Level inpuis)	$ \begin{array}{l} V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V \\ Active \text{ Port Outputs Disabled,} \\ f = f_{MAX}^{(3)} \end{array} $	MIL & IND	SA LA	_		95 95	210 150	85 85	190 130	

2720 tbl 06a

					713 Cor Mili	4X45 n'l & itary	713 Com & Mi	4X55 'I, Ind Ilitary	713 Cor Mili	4X70 n'l & itary	
Symbol	Parameter	Test Condition	Vers	ion	Тур.	Max.	Тур.	Мах.	Тур.	Max.	Unit
lcc	Dynamic Operating Current (Roth Dorts, Activo)	$\overline{CE} = VIL$ Outputs Disabled	COM'L	SA LA	140 140	240 200	140 140	240 200	140 140	240 200	mA
			MIL & IND	SA LA	140 140	280 240	140 140	270 220	140 140	270 220	
ISB1	Standby Current (Both Ports - TTL	$\overline{CE}_{L} \text{ and } \overline{CE}_{R} = V_{H}$ $f = f_{MAX}^{(3)}$	COM'L	SA LA	25 25	70 40	25 25	70 40	25 25	70 40	mA
Level Inputs)		MIL & IND	SA LA	25 25	70 50	25 25	70 50	25 25	70 50		
ISB2	Standby Current (One Port - TTL	$\overline{CE}_{A^*} = V_{IL}$ and $\overline{CE}_{B^*} = V_{H}$ Active Port Outputs Disabled,	COM'L	SA LA	75 75	160 130	75 75	160 130	75 75	160 130	mA
	Level Inputs)	f=fmax ^(s)	MIL & IND	SA LA	75 75	190 150	75 75	180 150	75 75	180 150	
ISB3	Full Standby Current (Both Ports -	Both Ports $\overline{CE}L$ and $\overline{CER} \ge Vcc - 0.2V$	COM'L	SA LA	1.0 0.2	15 4.0	1.0 0.2	15 4.0	1.0 0.2	15 4.0	mA
	CMOS Level inpuis)	$V_{IN} \ge V_{CC} - 0.2V \text{ or}$ $V_{IN} \le 0.2V, \text{ f} = 0^{(3)}$	MIL & IND	SA LA	1.0 0.2	30 10	1.0 0.2	30 10	1.0 0.2	30 10	
ISB4	Full Standby Current (One Port -	One Port CEra∗ or CEra∗ ≥ Vcc - 0.2V	COM'L	SA LA	75 75	150 100	75 75	150 100	75 75	150 100	mA
CMOS Level Inputs)	$ \begin{array}{l} \forall n \geq vcc - 0.2 \forall \ or \ \forall n \leq 0.2 \\ \text{Active Port Outputs Disabled,} \\ f = f_{MAX}^{(3)} \end{array} $	MIL & IND	SA LA	75 75	180 120	75 75	170 120	75 75	170 120		
L		•								27	20 tbl 06b

NOTES:

1. 'X' in part number indicates power rating (SA or LA).

2. Vcc = 5V, TA = +25 $^{\circ}$ C for typical, and parameters are not production tested.

3. fmax = 1/trc = All inputs cycling at f = 1/trc (except Output Enable). f = 0 means no address or control lines change. Applies only to inputs at CMOS level standby IsB3.

Data Retention Characteristics Over All Temperature Ranges (LA Version Only) VLC = 0.2V, VHC = VCC - 0.2V

Symbol	Parameter	Test Condition	on	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdr	Vcc for Data Retention	Vcc = 2V		2.0		_	V
ICCDR	Data Retention Current	CE ≥ VHC	<u>></u> Vhc MIL. & IND.		100	4000	μA
		$V_{IN} \ge V_{HC} \text{ or } \le V_{LC}$	COM'L.	_	100	1500	
tcdr ⁽³⁾	Chip Deselect to Data Retention Time			0	_		ns
tR ⁽³⁾	Operation Recovery Time			tRC ⁽²⁾	—	_	ns

NOTES:

1. Vcc = 2V, TA = +25 $^\circ\text{C}$, and are not production tested.

2. tRc = Read Cycle Time.

3. This parameter is guaranteed by device characterization, but not production tested.

Data Retention Waveform

AC Test Conditions

Output Load	Figures 1 and 2
Output Reference Levels	1.5V
Input Timing Reference Levels	1.5V
Input Rise/Fall Times	5ns
Input Pulse Levels	GND to 3.0V

2720 tbl 08

Figure 1. AC Output Test Load

Figure 2. Output Test Load (for tLz, tHz, twz, tow) *Including scope and jig

2720 tbl 07

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽³⁾

		713 Com'	7134X20 7134X2 Com'l Only Com'l &		7134X25 7134 Com'l & Ind Cor & Mil		4X35 m'l litary	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE								
trc	Read Cycle Time	20	-	25		35		ns
taa	Address Access Time	-	20		25		35	ns
tace	Chip Enable Access Time	-	20		25		35	ns
taoe	Output Enable Access Time		15		15		20	ns
тон	Output Hold from Address Change	0	_	0		0		ns
t∟z	Output Low-Z Time ^(1,2)	0	_	0	-	0	_	ns
tHZ	Output High-Z Time ^(1,2)	_	15	_	15		20	ns
tpu	Chip Enable to Power Up Time ⁽²⁾	0		0		0		ns
tpd	Chip Disable to Power Down Time ⁽²⁾		20	_	25		35	ns

2720 tbl 09a

		7134 Con Mili	4X45 n'I & itary	7134X55 Com'l, Ind & Military		7134X70 Com'l & Military		
Symbol	Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Unit
READ CYCLE								
trc	Read Cycle Time	45	_	55		70		ns
taa	Address Access Time		45	_	55		70	ns
tace	Chip Enable Access Time		45	_	55	_	70	ns
taoe	Output Enable Access Time		25	_	30		40	ns
toн	Output Hold from Address Change	0	_	0		0		ns
tLZ	Output Low-Z Time ^(1,2)	5	_	5		5		ns
tHZ	Output High-Z Time ^(1,2)		20	_	25	_	30	ns
tpu	Chip Enable to Power Up Time ⁽²⁾	0		0		0		ns
tpd	Chip Disable to Power Down Time ⁽²⁾		45		50	_	50	ns

2720 tbl 09b

NOTES:

1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).

2. This parameter is guaranteed by device characterization, but is not production tested.

3. 'X' in part number indicates power rating (SA or LA).

Timing Waveform of Read Cycle No. 2, Either Side^(1,3)

NOTES:

1. Timing depends on which signal is asserted last, \overline{OE} or \overline{CE} .

2. Timing depends on which signal is de-asserted first, $\overline{\text{OE}}$ or $\overline{\text{CE}}$.

- 3. $R/\overline{W} = VIH$.
- 4. Start of valid data depends on which timing becomes effective, tAOE, tACE or tAA
- 5. taa for RAM Address Access and tsaa for Semaphore Address Access.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽⁵⁾

		7134X20 7134X25 Com'l Only Com'l & Ind		7134X35 Com'l & Military				
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CYCLE								
twc	Write Cycle Time	20		25		35		ns
tew	Chip Enable to End-of-Write	15		20		30		ns
taw	Address Valid to End-of-Write	15		20		30		ns
tas	Address Set-up Time	0		0		0		ns
twp	Write Pulse Width	15		20		25		ns
twr	Write Recovery Time	0		0		0		ns
tow	Data Valid to End-of-Write	15		15		20		ns
tнz	Output High-Z Time ^(1,2)		15		15		20	ns
tDH	Data Hold Time ⁽³⁾	0		0		3		ns
twz	Write Enable to Output in High-Z ^(1,2)		15		15		20	ns
tow	Output Active from End-of-Write ^(1,2,3)	3		3		3		ns
twdd	Write Pulse to Data Delay ⁽⁴⁾		40		50		60	ns
todd	Write Data Valid to Read Data Delay ⁽⁴⁾		30		30		35	ns

2720 tbl 10a

		7134X45 Com'l & Military		7134X55 Com'l, Ind & Military		7134X70 Com'l & Military		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CYCLE								
twc	Write Cycle Time	45		55		70		ns
tew	Chip Enable to End-of-Write	40		50		60		ns
taw	Address Valid to End-of-Write	40		50		60		ns
tas	Address Set-up Time	0		0		0		ns
twp	Write Pulse Width	40		50		60		ns
twr	Write Recovery Time	0		0		0		ns
tDW	Data Valid to End-of-Write	20		25		30		ns
tHZ	Output High-Z Time ^(1,2)		20		25		30	ns
tDH	Data Hold Time ⁽³⁾	3		3		3		ns
twz	Write Enable to Output in High-Z ^(1,2)		20		25		30	ns
tow	Output Active from End-of-Write ^(1,2,3)	3		3		3		ns
twdd	Write Pulse to Data Delay ⁽⁴⁾		70		80		90	ns
tDDD	Write Data Valid to Read Data Delay ⁽⁴⁾		45	—	55		70	ns
2	•	-	-	-	•	-	-	- 2720 tbl 10b

NOTES:

1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).

2. This parameter is guaranteed by device characterization, but is not production tested.

4. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read".

5. 'X' in part number indicates power rating (SA or LA).

^{3.} The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tow values will vary over voltage and temperature, the actual tDH will always be smaller than the actual tow.

Military, Industrial and Commercial Temperature Ranges

Timing Waveform of Write with Port-to-Port Read^(1,2,3)

1. Write cycle parameters should be adhered to, in order to ensure proper writing.

2. $\overline{CE}L = \overline{CE}R = VIL$. $\overline{OE}^{*}B^{*} = VIL$.

3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

Timing Waveform of Write Cycle No. 1, R/W Controlled Timing^(1,5,8)

NOTES:

- 1. R/ \overline{W} or \overline{CE} must be HIGH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a \overline{CE} =VIL and R/ \overline{W} = VIL.
- 3. twr is measured from the earlier of \overline{CE} or R/\overline{W} going to VIH to the end-of-write cycle.
- 4. During this period, the I/O pins are in the output state, and input signals must not be applied.
- 5. If the CE = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal (\overline{CE} or R/\overline{W}) is asserted last.
- 7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2).
- 8. If OE = VIL during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

Timing Waveform of Write Cycle No. 2, **CE** Controlled Timing^(1,4)

NOTES:

- 1. R/\overline{W} or \overline{CE} must be HIGH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a \overline{CE} =VIL and R/W = VIL.
- 3. two is measured from the earlier of \overline{CE} or R/W going HIGH to the end-of-write cycle.
- 4. If the CE LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.
- 5. Timing depends on which enable signal (CE or R/W) is asserted last.

Functional Description

The IDT7134 provides two ports with separate control, address, and I/O pins that permit independent access for reads or writes to any location in memory. These devices have an automatic power down feature controlled by \overline{CE} . The \overline{CE} controls on-chip power down circuitry that permits the respective port to go into standby mode when not selected (\overline{CE} HIGH). When a port is enabled, access to the entire memory array is permitted. Each port has its own Output Enable control (\overline{OE}). In the read mode, the port's \overline{OE} turns on the output drivers when set LOW. Non-contention READ/WRITE conditions are illustrated inTruth Table I.

Truth Table I – Read/Write Control

Left or Right Port ⁽¹⁾				
R/W	Ē	ŌĒ	D0-7	Function
Х	Η	Х	Z	Port Deselected and in Power-Down Mode, IsB2 or IsB4
Х	Η	Х	Z	CER = CEL = H, Power Down Mode Isb1 or Isb3
L	L	Х	DATAℕ	Data on port written into memory
Η	L	L	DATAOUT	Data in memory output on port
Х	Х	Η	Z	High impedance outputs

2720 tbl 11

NOTE:

1. AoL - A11L \neq AOR - A11R

"H" = VIH, "L" = VIL, "X" = Don't Care, and "Z" = High Impedance

7134SA/LA High-Speed 4K x 8 Dual-Port Static SRAM

Ordering Information

NOTES:

1. Contact your local sales office for industrial temp. range for other speeds, packages and powers.

 Green parts available. For specific speeds, packages and powers contact your local sales office. LEAD FINISH (SnPb) parts are Obsolete excluding FP48, LC48 & SB48. Product Discontinuation Notice - PDN# SP-17-02 Note that information regarding recently obsoleted parts are included in this datasheet for customer convenience.

Pkg. Temp. Speed Pkg. **Orderable Part ID** (ns) Code Туре Grade 7134LA20JG PLG52 PLCC С 20 7134LA20JG8 PLG52 PLCC С 7134LA20PDG PDG48 PDIP С T 25 7134LA25JGI PLG52 PLCC 7134LA25JGI8 PLG52 PLCC Т 7134LA25PDGI PDG48 PDIP I SB48 35 7134LA35CB SB Μ 7134LA35FB FP48 FPACK Μ 7134LA35L48B LC48 LCC Μ 45 7134LA45CB **SB48** SB Μ 55 7134LA55CB SB48 SB Μ 7134LA55L48B LC48 LCC Μ 70 7134LA70CB **SB48** SB Μ 7134LA70L48B LC48 LCC Μ

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
35	7134SA35CB	SB48	SB	М
	7134SA35L48B	LC48	LCC	М
45	7134SA45CB	SB48	SB	М
55	7134SA55CB	SB48	SB	М
	7134SA55JG	PLG52	PLCC	С
	7134SA55JG8	PLG52	PLCC	С
	7134SA55L48B	LC48	LCC	М
70	7134SA70CB	SB48	SB	М
	7134SA70L48B	LC48	LCC	М

Orderable Part Information

Datasheet Document History

03/25/99:		Initiated datasheet document history
		Converted to new format
		Cosmetic and typographical corrections
	Pages 2	Added additional notes to pin configurations
060/9/99:	5	Changed drawing format
10/01/99:		Added Industrial Temperature Ranges and removed corresponding notes
11/10/99:		Replaced IDT logo
12/22/99:	Page 1	Made corrections to drawing
03/03/00:	5	Corrected block diagram and pin configurations
		Changed ±500mV to 0mV
01/12/00:	Pages 1 2	Moved "Description to page 2 and adjusted page layout
	Page 1	Added "LA only)" to paragraph
	Page 2	Fixed P48-1 package description
	Page 3	Increased storage temperature parameters
	5	Clarified TA parameter
	Page 4	DC Electrical parameters-changed wording from "open" to "disabled"
	Page 10	Fixed Truth Table specification in "Functional Description" paragraph
01/17/06:	Page 1	Added green availability to features
	Page 11	Added green indicator to ordering information
	Page 1 & 11	Replaced old IDTTM with new IDTTM logo
08/12/08:	Page 11	Corrected typo in the ordering information
10/21/08:	Page 11	Removed "IDT" from orderable part number
01/16/13:	Page 1, 4, 6 & 8	Removed Military 25ns & Industrial 35ns speed grades from Features and corrected
		the headers of the DC Chars and AC Chars tables to indicate this change
	Page 11	Added T& R indicator to and removed Military 25ns & Industrial 35ns speed grades from the
		ordering information
10/21/08:	Page 11	Removed "IDT" from orderable part number
02/04/13:	Page 1, 4, 6 & 8	Removed Military 25ns & Industrial 35ns speed grades from Features and corrected
		the headers of the DC Chars and AC Chars tables to indicate this change
	Page 11	Added T& R indicator to and removed Military 25ns & Industrial 35ns speed grades from the
		ordering information
	Page 2	Typo/correction
01/11/18:		Product Discontinuation Notice - PDN# SP-17-02
		Last time buy expires June 15, 2018
05/10/21:	Pages 1 - 14	Rebranded as Renesas datasheet
	Page 2 & 3	Rotated LC48 LCC, FP48 Flatpack & PLG52 PLCC to accurately reflect pin 1 orientation
	Page 2, 3 & 12	Updated package codes
	Page 12	Added Orderable Part Information tables

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

CY6116A-35DMB CY7C1049GN-10VXI GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2#AA0 IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI IS66WVE4M16EALL-70BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KVE33-133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8866201YA 5962-8866204TA 5962-9062007MXA 5962-9161705MXA GS882Z18CD-150I 8413202RA 5962-8866208YA 5962-8866203YA IS61WV102416DBLL-10BLI IS66WVC2M16ECLL-7010BLI CY7C1380KV33-250AXC AS6C8016-55BINTR GS81284Z18B-250I AS7C34096B-10TIN GS84018CB-200I IS62WV25616EALL-55TLI IS61WV204816BLL-10TLI GS8128418B-167IV CY7C1460KV25-200BZXI CY7C1315KV18-333BZXC CY62157G30-45ZSXI 71V016SA12YG RMLV0416EGBG-4S2#AC0 CY62126EV18LL-70BVXI