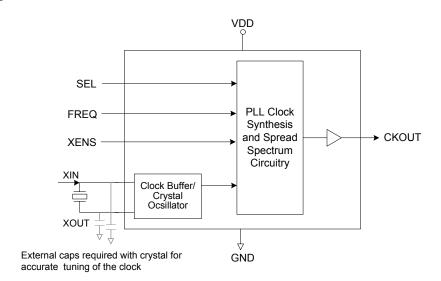


SPREAD SPECTRUM CLOCK GENERATOR

ICS7152A

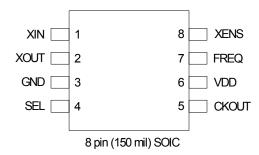
Description


The ICS7152A-02 and -11 are clock generators for EMI (Electromagnetic Interference) reduction (see below for frequency ranges and multiplier ratios). Spectral peaks are attenuated by modulating the system clock frequency. Down or center spread profiles are selectable. Down spread will not exceed the maximum frequency of an unspread clock, and center spread does not change the average operating frequency of the system

IDT offers many other clocks for computers and computer peripherals. Consult IDT when you need to remove crystals and oscillators from your board.

Features

- Operating voltage of 3.3 V ±0.3 V
- Packaged in 8-pin SOIC
- Input frequency range of 16.6 to 134.0 MHz
- Output frequency range of 16.6 to 134.0 MHz
- Provides a spread spectrum clock output (±0.5%, ±1.5% center spread; -1.0%, -3.0% down spread)
- · Low cycle-to-cycle jitter less than 100 ps
- Advanced, low-power CMOS process
- · Industrial and commercial temperature ranges
- Pb (lead) free package, RoHS compliant
- Pin compatible with Fujitsu MB88152-102 and -111


Block Diagram

Product Lineup

Product	Input Frequency Range	Modulation Type	Modulation Enable Pin
ICS7152AM-02, ICS7152AMI-02	40.0 MHz to 134.0 MHz	Down spread	Yes
ICS7152AM-11, ICS7152AMI-11	16.6 MHz to 67.0 MHz	Center spread	ies

Pin Assignment

Modulation Enable Select Table

XENS Pin 8	Modulation
0	Modulation
1	No modulation

Spread Direction and Percentage Select Table

SEL Pin 4	Spread Direction	Spread Percentage (%)	Part Number
0	Center	±0.5	ICS7152AM-11
	Down	-1.0	ICS7152AM-02
1	Center	±1.5	ICS7152AM-11
	Down	-3.0	ICS7152AM-02

Frequency Select Table

FREQ Pin 7	Frequ	Frequency					
0	16.6 to 40 MHz	ICS7152AM-11					
	40 to 80 MHz	ICS7152AM-02					
1	33 to 67 MHz	ICS7152AM-11					
	66 to 134 MHz	ICS7152AM-02					

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	XIN	Input	Crystal/clock input pin.
2	XOUT	Output	Crystal.
3	GND	Power	Connect to ground.
4	SEL	Input	Spread modulation select.
5	CKOUT	Output	Clock output.
6	VDD	Power	Connect to +3.3 V.
7	FREQ	Input	Frequency select.
8	XENS	Input	Modulation enable select.

External Components

The ICS7152A requires a minimum number of external components for proper operation.

Decoupling Capacitor

A decoupling capacitor of $0.01\mu F$ must be connected between GND and VDD on pins 3 and 6, as close to these pins as possible. For optimum device performance, the decoupling capacitor should be mounted on the component side of the PCB. Avoid the use of vias in the decoupling circuit.

Series Termination Resistor

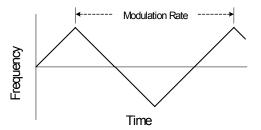
Series termination should be used on the clock output. To series terminate a 50Ω trace (a commonly used trace impedance) place a 27Ω resistor in series with the clock line, as close to the clock output pin as possible. The nominal impedance of the clock output is 25Ω

PCB Layout Recommendations

For optimum device performance and lowest output phase noise, the following guidelines should be observed.

- 1) The $0.01\mu F$ decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible. No vias should be used between the decoupling capacitor and VDD pin. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via.
- 2) To minimize EMI, the 27Ω series termination resistor (if needed) should be placed close to the clock output.
- 3) An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers. Other signal traces should be routed away from the ICS7152A. This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device.

Crystal Information

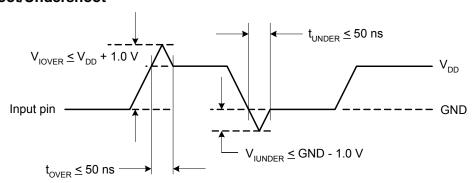

The crystal used should be a fundamental mode, parallel resonant. Crystal capacitors should be connected from pins X1 to ground and X2 to ground to optimize the initial accuracy. The value of these capacitors is given by the following equation:

Crystal caps (pF) =
$$(C_1 - 6) \times 2$$

In the equation, C_L is the crystal load capacitance. So, for a crystal with a 16 pF load capacitance, two 20 pF [(16-6) x 2] capacitors should be used.

Spread Spectrum Profile

The ICS7152A low EMI clock generator uses a triangular frequency modulation profile for optimal down stream tracking of zero delay buffers and other PLL devices. The frequency modulation amplitude is constant with variations of the input frequency.



Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS7152A. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD	-0.5 to 4.0 V
All Inputs and Outputs (referenced to GND)	-0.5 V to VDD+0.5 V
Ambient Operating Temperature	-40 to +85° C
Storage Temperature	-55 to +125° C
Junction Temperature	-40 to +125° C
Soldering Temperature	260° C
Overshoot (V _{IOVER})	VDD + 1.0 V (t _{OVER} ≤ 50 ns) max
Undershoot (V _{IUNDER})	GND - 1.0 V (t _{UNDER} ≤ 50 ns) min

Overshoot/Undershoot

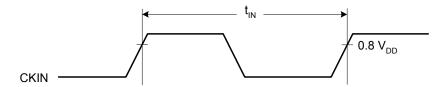
Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature	-40		+85	°C
Power Supply Voltage (measured in respect to GND)	+3.0	3.3	3.6	V

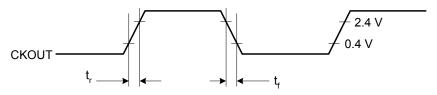
DC Electrical Characteristics

Unless stated otherwise, VDD = 3.3 V ±0.3 V, Ambient Temperature -40 to +85° C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.0	3.3	3.6	V
Supply Current	IDD	No load, at 3.3 V, output = 24 MHz		10	14	mA
		SEL, FREQ, XENS	VDD x 0.8		VDD + 0.3	V
Input High Voltage	V _{IH}	XIN, Input slew rate 3 V/ns, 16.6 to 100 MHz	VDD x 0.8		VDD + 0.3	V
		XIN, Input slew rate 3 V/ns, 100 to 134 MHz	VDD x 0.9		VDD + 0.3	V
		SEL, FREQ, XENS	GND		VDD x 0.20	V
Input Low Voltage	V _{IL}	XIN, Input slew rate 3 V/ns, 16.6 to 100 MHz	GND		VDD x 0.20	V
		XIN, Input slew rate 3 V/ns, 100 to 134 MHz	GND		VDD x 0.10	V
Output High Voltage	V _{OH}	CKOUT, I _{OH} = -4 mA	VDD - 0.5		VDD	V
Output Low Voltage	V _{OL}	CKOUT, I _{OL} = 4 mA	GND		0.4	V
Input Capacitance	C _{IN}	XIN, SEL, XENS			16	pF
		CKOUT, 16.6 to 67 MHz			15	pF
Load Capacitance	C _L	CKOUT, 67 to 100 MHz			10	pF
		CKOUT, 100 to 134 MHz			7	pF
Output Impedance	Z _O	CKOUT, 16.6 to 134 MHz		25		Ω


AC Electrical Characteristics

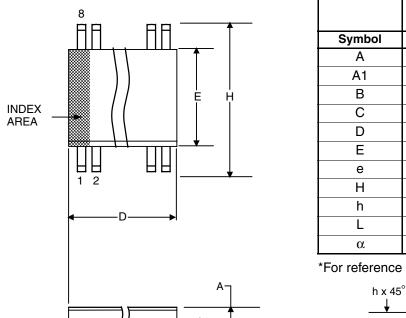
Unless stated otherwise, VDD = 3.3 V ±0.3 V, Ambient Temperature -40 to +85° C


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Oscillation Frequency	f _X	XIN, XOUT, Fundamental oscillation	16.6		40	MHz
		XIN, XOUT, 3rd over tone, note 1	40		48	MHz
Input Frequency	f _{IN}	XIN, ICS7152A-11	16.6		67	MHz
		XIN, ICS7152A-02	40		134	MHz
Output Frequency	fout	CKOUT, ICS7152A-11	16.6		67	MHz
		CKOUT, ICS7152A-02	40		134	MHz
Input Clock Duty Cycle	t _{DCI}	XIN, 16.6 to 100 MHz	40	50	60	%
		XIN, 100 to 134 MHz	45	50	55	%
Output Clock Duty Cycle	t _{DCC}	CKOUT, 1.5 V	40		60	%
Output Slew Rate		CKOUT, 0.4 to 2.4 V, load capacitance 15 pF	0.5	TBD	3.0	V/ns
Cycle to Cycle Jitter	t _{JC}	No load, standard deviation		TBD	100	ps
Lock Time	t _{LK}	CKOUT		2	5	ms
Modulation Frequency	f _{MOD}	CKOUT=TBD		33		kHz

Note 1: Contact ICS Applications for more information.

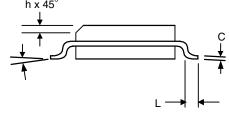
Input Frequency ($f_{IN} = 1/t_{IN}$)

Output Slew Rate


$$SR = (2.4 - 0.4) / t_r$$
, $SR = (2.4 - 0.4) / t_f$

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air		150		° C/W
Ambient	θ_{JA}	1 m/s air flow		140		° C/W
	θ_{JA}	3 m/s air flow		120		° C/W
Thermal Resistance Junction to Case	θ_{JC}			40		° C/W


Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

	Millimeters		Inch	nes*
Symbol	Min	Max	Min	Max
Α	1.35	1.75	.0532	.0688
A1	0.10	0.25	.0040	.0098
В	0.33	0.51	.013	.020
С	0.19	0.25	.0075	.0098
D	4.80	5.00	.1890	.1968
Е	3.80	4.00	.1497	.1574
е	1.27 E	BASIC	0.050	BASIC
Н	5.80	6.20	.2284	.2440
h	0.25	0.50	.010	.020
L	0.40	1.27	.016	.050
α	0°	8°	0°	8°

^{*}For reference only. Controlling dimensions in mm.

SEATING PLANE

_ .10 (.004) C

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
7152AM-02LF	152AM02L	Tubes	8-pin SOIC	0 to +70° C
7152AM-02LFT	152AM02L	Tape and Reel	8-pin SOIC	0 to +70° C
7152AMI-02LF	52AMI02L	Tubes	8-pin SOIC	-40 to +85° C
7152AMI-02LFT	52AMI02L	Tape and Reel	8-pin SOIC	-40 to +85° C
7152AM-11LF	7152A11L	Tubes	8-pin SOIC	0 to +70° C
7152AM-11LFT	7152A11L	Tape and Reel	8-pin SOIC	0 to +70° C
7152AMI-11LF	152Al11L	Tubes	8-pin SOIC	-40 to +85° C
7152AMI-11LFT	152Al11L	Tape and Reel	8-pin SOIC	-40 to +85° C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Originator	Date	Description of Change
Α	J. Sarma	10/20/05	Rev A; new device/datasheet.
В		01/10/08	Updated the -11 device markings.
D		11/04/09	Added EOL note for non-green parts.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE
ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7
MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI
5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2
MAX24405EXG2 ZL30237GGG2 SY100EL34LZG AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7
AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1