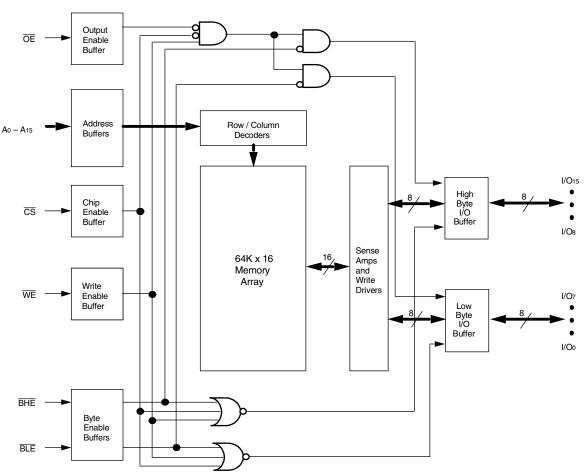


3.3V CMOS Static RAM 1 Meg (64K x 16-Bit)

Features

- 64K x 16 advanced high-speed CMOS Static RAM
- Equal access and cycle times — Commercial: 10/12/15/20ns — Industrial: 10/12/15/20ns
- One Chip Select plus one Output Enable pin Bidirectional data inputs and outputs directly LVTTL-compatible
- ٠ Low power consumption via chip deselect
- Upper and Lower Byte Enable Pins
- Single 3.3V power supply
- Available in 44-pin Plastic SOJ, 44-pin TSOP, and 48-Ball Plastic FBGA packages
- ٠ Industrial temperature range (-40°C to +85°C) is available for selected speeds
- ٠ Green parts available, see ordering information

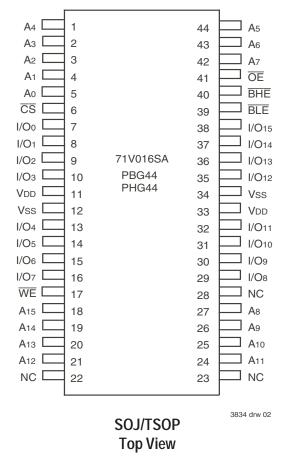

Functional Block Diagram

Description

The IDT71V016 is a 1,048,576-bit high-speed Static RAM organized as 64K x 16. It is fabricated using high-performance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71V016 has an output enable pin which operates as fast as 5ns, with address access times as fast as 10ns. All bidirectional inputs and outputs of the IDT71V016 are LVTTL compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.

The IDT71V016 is packaged in a JEDEC standard 44-pin Plastic SOJ, a 44-pin TSOP Type II, and a 48-ball plastic 7 x 7 mm FBGA.



3834 drw 01

71V016SA, 3.3V CMOS Static RAM 1 Meg (64K x 16-Bit)

Pin Configurations - PBG44, PHG44⁽¹⁾

NOTE:

1. This text does not indicate orientation of actual part-marking.

	1	2	3	4	5	6
A	BLE	ŌĒ	Ao	A1	A2	NC
В	I/O8	BHE	A3	A4	CS	I/Oo
С	I/O9	I/O10	A5	A6	I/O1	I/O2
D	Vss	I/O11	NC	A7	I/O3	Vdd
E	Vdd	I/O12	NC	NC	I/O4	Vss
F	I/O14	I/O13	A14	A 15	I/O5	I/O6
G	I/O15	NC	A 12	A13	WE	I/O7
Η	NC	A8	A۹	A 10	A11	NC
		FBG	A (BF48,	, BFG48)	(1)	3834 tbl 02a

Commercial and Industrial Temperature Ranges

NOTE:

1. This text does not indicate orientation of actual part-marking.

Pin Description

A0 – A15	Address Inputs	Input
CS	Chip Select	Input
WE	Write Enable	Input
ŌĒ	Output Enable	Input
BHE	High Byte Enable	Input
BLE	Low Byte Enable	Input
I/O0 – I/O15	Data Input/Output	I/O
Vdd	3.3V Power	Power
Vss	Ground	Gnd

Top View

3834 tbl 01

CS	ŌĒ	WE	BLE	BHE	I/O 0- I/O 7	I/O8-I/O 15	Function
Н	Х	Х	Х	Х	High-Z	High-Z	Deselected – Standby
L	L	Н	L	Н	DATAOUT	High-Z	Low Byte Read
L	L	Н	Н	L	High-Z	DATAOUT	High Byte Read
L	L	Н	L	L	DATAOUT	DATAOUT	Word Read
L	Х	L	L	L	DATAIN	DATAIN	Word Write
L	Х	L	L	Н	DATAIN	High-Z	Low Byte Write
L	Х	L	Н	L	High-Z	DATAIN	High Byte Write
L	Н	Н	Х	Х	High-Z	High-Z	Outputs Disabled
L	Х	Х	Н	Н	High-Z	High-Z	Outputs Disabled

NOTE:

1. $H = V_{IH}, L = V_{IL}, X = Don't care.$

Truth Table⁽¹⁾

3834 tbl 02

Commercial and Industrial Temperature Ranges

Vss

0V

0V

Vdd

See Below

See Below 3834 tbl 04

3834 tbl 05

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating Value		Unit
Vdd	Supply Voltage Relative to Vss	-0.5 to +4.6	V
Vin, Vout	Terminal Voltage Relative to Vss	-0.5 to VDD+0.5	V
Tbias	Temperature Under Bias	-55 to +125	٥C
Tstg	Storage Temperature	-55 to +125	٥C
Рт	Power Dissipation	1.25	W
Iout	DC Output Current	50	mA
NOTE.			3834 tbl 03

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Capacitance

$(TA = +25^{\circ}C, f = 1.0MHz, SOJ package)$

	· · · · · · · · · · · · · · · · · · ·			
Symbol	Parameter ⁽¹⁾	meter ⁽¹⁾ Conditions		Unit
Cin	Input Capacitance	VIN = 3dV	6	pF
Cı/o	I/O Capacitance	Vout = 3dV	7	pF
NOTE				3834 tbl 06

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

DC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)

			IDT71V016SA		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
lu	Input Leakage Current	VDD = Max., VIN = VSS to VDD		5	μA
Ilo	Output Leakage Current	$V_{DD} = Max., \overline{CS} = V_{IH}, V_{OUT} = V_{SS} to V_{DD}$		5	μA
Vol	Output Low Voltage	IOL = 8mA, VDD = Min.		0.4	V
Vон	Output High Voltage	IOH = -4mA, $VDD = Min$.	2.4		V

3834 tbl 07

DC Electrical Characteristics^(1,2)

(VDD = Min. to Max., VLC = 0.2V, VHC = VDD - 0.2V)

			71V01	6SA10	71V01	6SA12	71V01	16SA15 71V016SA20		6SA20	
Symbol	Parameter		Com'l	Ind'l	Com'l	Ind'l	Com'l	Ind'l	Com'l	Ind'l	Unit
lcc	Dynamic Operating Current	Max.	160	170	150	160	130	130	120	120	mA
	$\overline{CS} \le V_{LC}$, Outputs Open, VDD = Max., f = fmax ⁽³⁾	Typ. ⁽⁴⁾	65	-	60		55		50		
ISB	Dynamic Standby Power Supply Current $\overline{\text{CS}} \ge \text{VHc}$, Outputs Open, VDD = Max., f = fMax ⁽³⁾		45	50	40	45	35	35	30	30	mA
ISB1	Full Standby Power Supply Current (static) $\overline{CS} \ge V_{HC}$, Outputs Open, VDD = Max., f = 0 ⁽³⁾		10	10	10	10	10	10	10	10	mA

NOTES:

1. All values are maximum guaranteed values.

2. All inputs switch between 0.2V (Low) and VDD - 0.2V (High).

3. fmax = 1/trc (all address inputs are cycling at fmax); f = 0 means no address input lines are changing .

Typical values are based on characterization data for H step only measured at 3.3V, 25°C and with equal read and write cycles. 4.

Grade

Commercial

Industrial

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd ⁽¹⁾	Supply Voltage	3.15	3.3	3.6	V
Vdd ⁽²⁾	Supply Voltage	3.0	3.3	3.6	V
Vss	Ground	0	0	0	V
Vih	Input High Voltage	2.0		VDD+0.3(3)	V
Vil	Input Low Voltage	-0.3 ⁽⁴⁾		0.8	V

NOTES:

1. For 71V016SA10 only.

2. For all speed grades except 71V016SA10.

3. VIH (max.) = VDD+2V for pulse width less than 5ns, once per cycle.

4. VIL (min.) = -2V for pulse width less than 5ns, once per cycle.

Recommended Operating

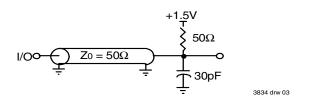
Temperature

0°C to +70°C

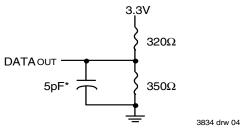
-40°C to +85°C

Recommended DC Operating

Temperature and Supply Voltage


3834 tbl 08

AC Test Conditions


Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	1.5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figure 1, 2 and 3

3834 tbl 09

AC Test Loads

*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

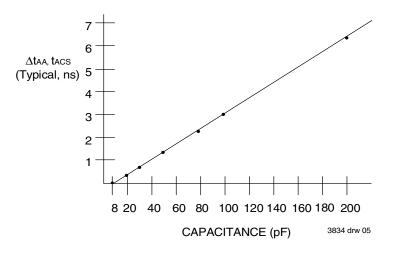
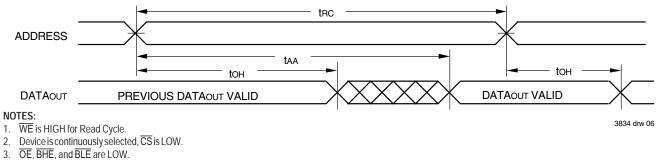


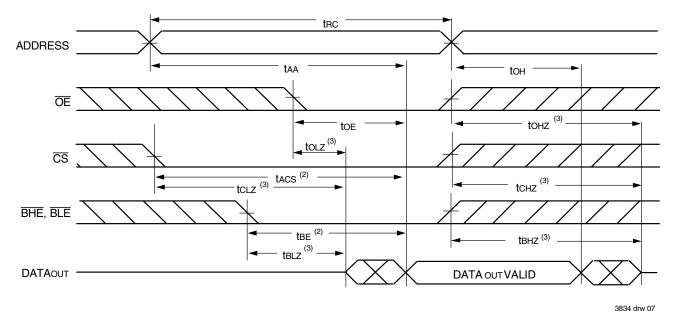
Figure 3. Output Capacitive Derating

AC Electrical Characteristics (VDD = Min. to Max., Commercial and Industrial Temperature Ranges)


		71V01	16SA10	71V01	16SA12	71V0 ⁻	16SA15	71V01	6SA20	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	E		•				•			-
trc	Read Cycle Time	10		12		15		20		ns
taa	Address Access Time		10		12		15		20	ns
tacs	Chip Select Access Time		10		12		15		20	ns
tclz ⁽¹⁾	Chip Select Low to Output in Low-Z	4		4		5		5		ns
tснz ⁽¹⁾	Chip Select High to Output in High-Z		5		6		6		8	ns
toe	Output Enable Low to Output Valid		5		6	—	7		8	ns
tolz ⁽¹⁾	Output Enable Low to Output in Low-Z	0		0		0		0		ns
tонz ⁽¹⁾	Output Enable High to Output in High-Z		5		6	—	6		8	ns
toн	Output Hold from Address Change	4	_	4	-	4	_	4	_	ns
tве	Byte Enable Low to Output Valid	_	5	_	6	_	7		8	ns
tBLZ ⁽¹⁾	Byte Enable Low to Output in Low-Z	0		0		0		0		ns
tbHz ⁽¹⁾	Byte Enable High to Output in High-Z		5		6	—	6		8	ns
WRITE CYC	LE	•								
twc	Write Cycle Time	10		12		15		20	—	ns
taw	Address Valid to End of Write	7		8		10		12		ns
tcw	Chip Select Low to End of Write	7		8		10		12		ns
tøw	Byte Enable Low to End of Write	7		8		10		12		ns
tas	Address Set-up Time	0		0	_	0		0	—	ns
twr	Address Hold from End of Write	0		0		0		0		ns
twp	Write Pulse Width	7		8	—	10		12	—	ns
tow	Data Valid to End of Write	5		6	—	7		9	—	ns
tDH	Data Hold Time	0		0		0		0		ns
tow ⁽¹⁾	Write Enable High to Output in Low-Z	3		3		3		3	—	ns
twнz ⁽¹⁾	Write Enable Low to Output in High-Z		5		6		6		8	ns

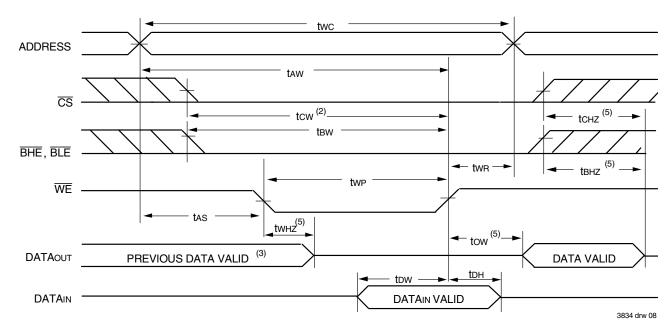
NOTE:

1. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.


3834 tbl 10

Timing Waveform of Read Cycle No. 1^(1,2,3)

Timing Waveform of Read Cycle No. 2⁽¹⁾


NOTES:

1. WE is HIGH for Read Cycle.

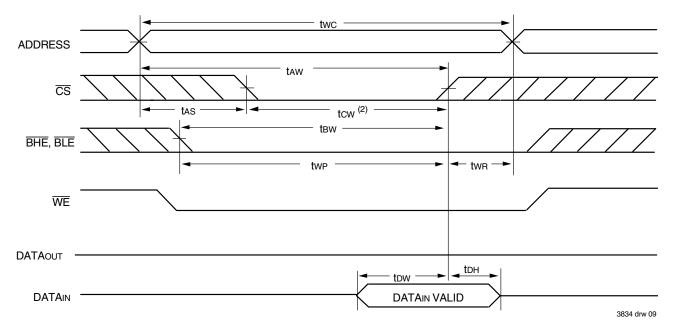
2. Address must be valid prior to or coincident with the later of CS, BHE, or BLE transition LOW; otherwise taa is the limiting parameter.

3. Transition is measured ±200mV from steady state.

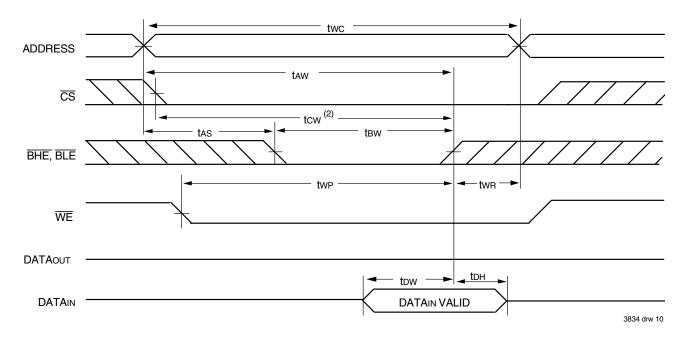
Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)^(1,2,4)

NOTES:

1. A write occurs during the overlap of a LOW CS, LOW BHE or BLE, and a LOW WE.


 OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
During this period, I/O pins are in the output state, and input signals must not be applied.

4. If the ČS LOW or BHE and BLE LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.

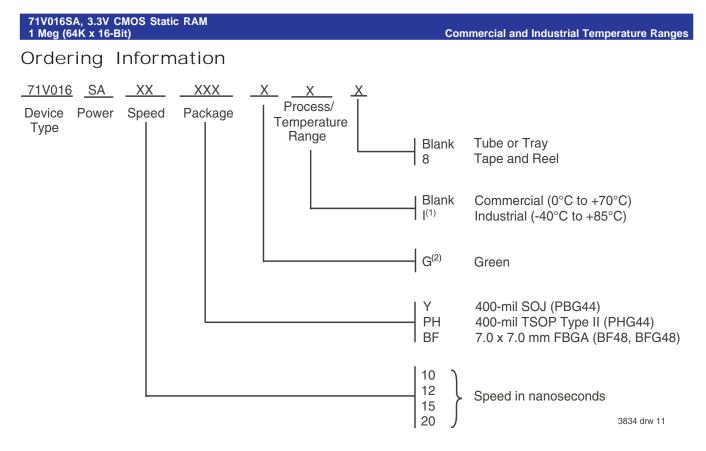

5. Transition is measured ± 200 mV from steady state.

Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)^(1,4)

Timing Waveform of Write Cycle No. 3 (BHE, BLE Controlled Timing)^(1,4)

NOTES:

1. A write occurs during the overlap of a LOW \overline{CS} , LOW \overline{BHE} or \overline{BLE} , and a LOW \overline{WE} .


2. OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.

3. During this period, I/O pins are in the output state, and input signals must not be applied.

4. If the \overline{CS} LOW or \overline{BHE} and \overline{BLE} LOW transition occurs simultaneously with or after the \overline{WE} LOW transition, the outputs remain in a high-impedance state.

5. Transition is measured $\pm 200 \text{mV}$ from steady state.

NOTE:

1. Contact your local sales office for industrial temp. range for other speeds, packages and powers.

2. Green parts available. For specific speeds, packages and powers contact your local sales office.

Note that information regarding recently obsoleted parts are included in this datasheet for customer convenience.

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
10	71V016SA10BF	BF48	CABGA	С
	71V016SA10BF8	BF48	CABGA	С
	71V016SA10BFG	BFG48	CABGA	С
	71V016SA10BFG8	BFG48	CABGA	С
	71V016SA10BFGI	BFG48	CABGA	Ι
	71V016SA10BFGI8	BFG48	CABGA	Ι
	71V016SA10PHG	PHG44	TSOP	С
	71V016SA10PHG8	PHG44	TSOP	С
	71V016SA10PHGI	PHG44	TSOP	I
	71V016SA10PHGI8	PHG44	TSOP	I
	71V016SA10YG	PBG44	SOJ	С
	71V016SA10YG8	PBG44	SOJ	С
12	71V016SA12BF	BF48	CABGA	С
	71V016SA12BF8	BF48	CABGA	С
	71V016SA12BFG	BFG48	CABGA	С
	71V016SA12BFG8	BFG48	CABGA	С
	71V016SA12BFGI	BFG48	CABGA	I
	71V016SA12BFGI8	BFG48	CABGA	I
	71V016SA12BFI	BF48	CABGA	I
	71V016SA12BFI8	BF48	CABGA	I
	71V016SA12PHG	PHG44	TSOP	С
	71V016SA12PHG8	PHG44	TSOP	С
	71V016SA12PHGI	PHG44	TSOP	I
	71V016SA12PHGI8	PHG44	TSOP	I
	71V016SA12YG	PBG44	SOJ	С
	71V016SA12YG8	PBG44	SOJ	С
	71V016SA12YGI	PBG44	SOJ	I
	71V016SA12YGI8	PBG44	SOJ	I

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
15	71V016SA15BF	BF48	CABGA	С
	71V016SA15BF8	BF48	CABGA	С
	71V016SA15BFG	BFG48	CABGA	С
	71V016SA15BFG8	BFG48	CABGA	С
	71V016SA15BFGI	BFG48	CABGA	Ι
	71V016SA15BFGI8	BFG48	CABGA	I
	71V016SA15BFI	BF48	CABGA	I
	71V016SA15BFI8	BF48	CABGA	I
	71V016SA15PHG	PHG44	TSOP	С
	71V016SA15PHG8	PHG44	TSOP	С
	71V016SA15PHGI	PHG44	TSOP	I
	71V016SA15PHGI8	PHG44	TSOP	I
	71V016SA15YG	PBG44	SOJ	С
	71V016SA15YG8	PBG44	SOJ	С
	71V016SA15YGI	PBG44	SOJ	I
	71V016SA15YGI8	PBG44	SOJ	I
20	71V016SA20BF	BF48	CABGA	С
	71V016SA20BF8	BF48	CABGA	С
	71V016SA20BFG	BFG48	CABGA	С
	71V016SA20BFG8	BFG48	CABGA	С
	71V016SA20BFGI	BFG48	CABGA	I
	71V016SA20BFGI8	BFG48	CABGA	I
	71V016SA20BFI	BF48	CABGA	I
	71V016SA20BFI8	BF48	CABGA	I
	71V016SA20PHG	PHG44	TSOP	С
	71V016SA20PHG8	PHG44	TSOP	С
	71V016SA20PHGI	PHG44	TSOP	I
	71V016SA20PHGI8	PHG44	TSOP	I
	71V016SA20YG	PBG44	SOJ	С
	71V016SA20YG8	PBG44	SOJ	С
	71V016SA20YGI	PBG44	SOJ	I
	71V016SA20YGI8	PBG44	SOJ	I
				-

9 RENESAS

Datasheet Document History

		5
01/07/00		Updated to new format
	Pg. 1, 3, 5, 8	Added Industrial Temperature range offerings
	Pg. 2	Numbered I/Os and address pins on FBGA Top View
	Pg. 6	Revised footnotes on Write Cycle No. 1 diagram
	Pg. 7	Revised footnotes on Write Cycle No. 2 and No. 3 diagrams
	Pg. 9	Added Datasheet Document History
08/30/00	Pg. 3	Tighten Icc and IsB.
	Pg. 5	Tighten tCLZ, tCHZ, tOHZ, tBHZ and tWHZ
08/22/01	Pg. 8	Removed footnote "available in 15ns and 20ns only"
06/20/02	Pg. 8	Added tape and reel field to ordering information
01/30/04	Pg. 8	Added "Restricted hazardous substance device" to ordering information.
09/27/06	Pg. 8	Corrected ordering information, changed position of I and G.
02/14/07	Pg.8	Added H step generation to data sheet ordering information.
06/26/07	Pg.3	Changed typical parameters for ICC, DC electrical characteristics table.
10/13/08	Pg.8	Removed "IDT" from orderable part number
10/11/11	Pg.1,8	Updated datasheet with removal of Obsolete HSA part number.
08/13/13	Pg.1,3,5,8	Added 10ns for Industrial Temperature range offerings.
06/23/20	Pg.1 - 9	Rebranded as Renesas datasheet
	Pg.1 & 8	Updated Industrial temp and Green availability
	Pg.2 & 8	Updated package codes
	Pg.9	Added Orderable Part Information tables

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SRAM category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

CY6116A-35DMB CY7C1049GN-10VXI CY7C1461KV33-133AXI GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 AS6C8016-55BIN AS7C164A-15PCN 515712X IS66WVE2M16ECLL-70BLI IS66WVE4M16EALL-70BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1460KV25-200BZI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4121KV13-600FCXC CY7C4142KV13-106FCXC GS882Z18CD-150I GS81284Z36B-250I IS66WVC2M16ECLL-7010BLI 7140LA35PDG CY7C1380KV33-250AXC AS6C8016-55BINTR 7140LA100PDG AS7C34096B-10TIN AS6C8016-55TIN IS62WV25616EALL-55TLI CY7C1460KV25-200BZXI CY7C1460KV25-167BZXI CY7C1370KV25-200AXC 71421LA55JI8 CY62158G30-45ZSXI CY62157G30-45ZSXI CY62187G30-55BAXI CY62157G30-45ZXI IS61VVPS102436B-200B3LI IS66WVC2M16EALL-7010BLI IS66WVE4M16EALL-70BLI-TR R1LP0108ESN-55I#\$1 R1LV0216BSB-55I#\$1 R1LP0408DSB-55I#\$1 71V016SA12BFGI 71V016SA15YGI8 71V016SA20YGI