renesas

IDT71V65703 IDT71V65903

Features

- $256 \mathrm{~K} \times 36,512 \mathrm{~K} \times 18$ memory configurations
- Supports high performance system speed - 100 MHz (7.5 ns Clock-to-Data Access)
- ZBT ${ }^{\text {TM }}$ Feature - No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control $\overline{O E}$
- Single R/W (READ/WRITE) control pin
- 4-word burst capability (Interleaved or linear)
- Individual byte write ($\overline{\left.\mathrm{BW}_{1}-\overline{\mathrm{BW}}_{4}\right) \text { control (May tie active) }}$
- Three chip enables for simple depth expansion
- 3.3V power supply ($\pm 5 \%$)
- $3.3 \mathrm{~V}(\pm 5 \%)$ IIO Supply (VDDQ)
- Power down controlled by ZZ input
- Packaged in a JEDEC standard 100 -pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array (fBGA)
- Green parts available, see ordering information

Description

The IDT71V65703/5903 are 3.3V high-speed 9,437,184-bit (9 Megabit) synchronous SRAMs organized as $256 \mathrm{~K} \times 36 / 512 \mathrm{~K} \times 18$. They are designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus they have been given the name $Z B T^{\top M}$, or Zero Bus Turnaround.

Address and control signals are applied to the SRAM during one clock cycle, and on the next clock cycle the associated data cycle occurs, be it read or write.

The IDT71V65703/5903 contain address, data-in and control signal registers. The outputs are flow-through (no output data register). Output enable is the only asynchronous signal and can be used to disable the outputs at any given time.

A Clock Enable ($\overline{\mathrm{CEN}}$) pin allows operation of the IDT71V65703/5903 tobesuspendedaslongasnecessary. Allsynchronousinputsareignoredwhen CEN is high and the internal device registers will hold their previous values.
There are three chip enable pins ($\overline{\mathrm{CE}}_{1}, \mathrm{CE} 2, \overline{\mathrm{CE}}_{2}$) that allow the user to deselect the device when desired. If any one of these three is not asserted when ADV/ $\overline{\mathrm{LD}}$ is low, no new memory operation can be initiated. However, any pending data transfers (reads or writes) will be completed. The data bus will tri-state one cycle after the chip is deselected or a write is initiated.

The IDT71V65703/5903 have an on-chip burstcounter. In the burst mode, the IDT71V65703/5903 can provide four cycles of data for a single address presented to the SRAM. The order of the burst sequence is defined by the $\overline{\mathrm{LBO}}$ input pin. The $\overline{\mathrm{LBO}}$ pin selects between linear and interleaved burst sequence. The ADV/LD signal is used to load a new external address (ADV//DD $=$ LOW) or incrementthe internal burstcounter (ADV/ $\overline{L D}=\mathrm{HIGH})$.

The IDT71V65703/5903 SRAMs utilize a high-performance CMOS process and are packaged in a JEDEC Standard $14 \mathrm{~mm} \times 20 \mathrm{~mm} 100-$ pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and a 165 fine pitch ball grid array (fBGA).

Pin Description Summary

A0-A 18	Address Inputs	Input	Synchronous
$\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$	Chip Enables	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
R \bar{W}	Read/Write Signal	Input	Synchronous
$\overline{C E N}$	Clock Enable	Input	Synchronous
	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	NA
ADV/LD	Advance Burst Address/Load New Address	Input	Synchronous
$\overline{\mathrm{LBO}}$	Linear/Interleaved Burst Order	Input	Static
ZZ	Sleep Mode	Input	Asynchronous
//OO-V/O31, //OP1-V/OP4	Data Input/Output	VO	Synchronous
VDD, VDDQ	Core Power, VO Power	Supply	Static
Vss	Ground	Supply	Static

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	I/O	Active	Description
A0-A18	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/LD low, $\overline{C E N}$ low, and true chip enables.
ADV/LD	Advance / Load	1	N/A	ADV/ $\overline{\mathrm{LD}}$ is a synchronous input that is used to load the internal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When ADV/ $\overline{\mathrm{LD}}$ is low with the chip deselected, any burst in progress is terminated. When ADV/ $\overline{\mathrm{LD}}$ is sampled high then the internal burst counter is advanced for any burst that was in progress. The external addresses are ignored when ADV/L्̄ट is sampled high.
R / \bar{W}	Read / Write	1	N/A	R / \bar{W} signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place one clock cycle later.
$\overline{C E N}$	Clock Enable	1	LOW	Synchronous Clock Enable Input. When $\overline{\mathrm{CEN}}$ is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of $\overline{C E N}$ sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, CEN must be sampled low at rising edge of clock.
$\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}}_{4}$	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (When R / \bar{W} and $A D V / \overline{L D}$ are sampled low) the appropriate byte write signal $(\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4)$ must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when R / \bar{W} is sampled high. The appropriate byte(s) of data are written into the device one cycle later. $\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}$ can all be tied low if always doing write to the entire 36 -bit word.
$\overline{\mathrm{C} E}{ }_{1}, \bar{C}^{2} 2$	Chip Enables	1	LOW	Synchronous active low chip enable. $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are used with CE_{2} to enable the IDT71V65703/5903 ($\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{CE}}_{2}$ sampled high or CE2 sampled low) and ADV/ID low at the rising edge of clock, initiates a deselect cycle. The $\mathrm{ZBT}^{T M}$ has a one cycle deselect, i.e., the data bus will tri-state one clock cycle atter deselect is initiated.
CE2	Chip Enable	1	HIGH	Synchronous active high chip enable. CE_{2} is used with $\overline{\mathrm{C}} \bar{E}_{1}$ and $\overline{\mathrm{C}}_{2}$ to enable the chip. CE 2 has inverted polarity but otherwise identical to $\overline{\mathrm{C}} \overline{\mathrm{E}}_{1}$ and $\overline{\mathrm{C}}_{2}$.
CLK	Clock	1	N/A	This is the clock input to the IDT1V65703/5903. Except for $\overline{\mathrm{OE}}$, all timing references for the device are made with respect to the rising edge of CLK.
$\begin{gathered} \text { //Oo-//O31 } \\ \text { //Op1-//Op4 } \end{gathered}$	Data Input/Output	I/O	N/A	Data input/output (/O) pins. The data input path is registered, triggered by the rising edge of CLK. The data output path is flow-through (no output register).
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Burst order selection input. When $\overline{\mathrm{LBO}}$ is high the Interleaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is low the Linear burst sequence is selected. $\overline{\mathrm{LBO}}$ is a static input, and it must not change during device operation.
$\overline{\mathrm{OE}}$	Output Enable	1	LOW	Asynchronous output enable. $\overline{\mathrm{OE}}$ must be low to read data from the $71 \mathrm{~V} 65703 / 5903$. When $\overline{\mathrm{OE}}$ is HIGH the I/O pins are in a high-impedance state. $\overline{\mathrm{OE}}$ does not need to be actively controlled for read and write cycles. In normal operation, $\overline{\mathrm{OE}}$ can be tied low.
ZZ	Sleep Mode	1	HIGH	Asynchro nous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT1V65703/5903 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.
VDD	Power Supply	N/A	N/A	3.3 V core power supply.
VDDQ	Power Supply	N/A	N/A	3.3V I/O supply.
Vss	Ground	N/A	N/A	Ground.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram - 256K x 36

5298 drw 01

Functional Block Diagram - 512K x 18

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Core Supply Voltage	3.135	3.3	3.465	V
VDDQ	I/O Supply Voltage	3.135	3.3	3.465	V
VSS	Ground	0	0	0	V
VIH	Input High Voltage - Inputs	2.0	-	VDD +0.3	V
$\mathrm{~V}_{\mathbb{H}}$	Input High Voltage - //O	2.0	-	VDDQ +0.3	V
VIL	Input Low Voltage	$-0.3^{(1)}$	-	0.8	V

NOTE:

1. VIL (min.) $=-1.0 \mathrm{~V}$ for pulse width less than tcyc/2, once per cycle.

Recommended Operating
 Temperature and Supply Voltage

Grade	Temperature ${ }^{(1)}$	Vss	VDD	VDDQ
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$

NOTE:
5298 tbl 05

1. TA is the "instant on" case temperature.

Pin Configuration - $256 \mathrm{~K} \times 36$

NOTES:

1. Pins 14 and 66 do not have to be connected directly to Vss as long as the input voltage is \leq VIL.
2. Pin 16 does not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
3. Pins 84 is reserved for a future 16 M .
4. DNU = Do not use. Pins 38, 39, 42 and 43 are reserved for respective JTAG pins TMS, TDI, TDO and TCK. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Pin Configuration - 512K x 18

Top View 100 TQFP

NOTES:

1. Pins 14 and 66 do not have to be connected directly to Vss as long as the input voltage is \leq VIL.
2. Pin 16 does not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
3. Pin 84 is reserved for a future 16 M .
4. $\operatorname{DNU}=$ Do not use. Pins $38,39,42$ and 43 are reserved for respective JTAG pins: TMS, TDI, TDO and TCK. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

100 TQFP Capacitance ${ }^{(1)}$

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=3 \mathrm{dV}$	5	pF
CIIO	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	 Industrial	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM $^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA $^{(7)}$	Commercial	0 to +70	${ }^{\circ} \mathrm{C}$
	Industrial	-40 to +85	${ }^{\circ} \mathrm{C}$
TBIAS	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	W
IOUT	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. TA_{A} is the "instant on" case temperature.

119 BGA Capacitance ${ }^{(1)}$

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=3 \mathrm{dV}$	7	pF
C/oo	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

165 fBGACapacitance ${ }^{(1)}$

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	TBD	pF
$\mathrm{Cl/o}$	I/O Capacitance	Vout $=3 \mathrm{dV}$	TBD	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Pin Configuration - $256 \mathrm{~K} \times 36$, 119 BGA

Pin Configuration - 512K x 18, 119 BGA

NOTES:

1. R5 and $\mathrm{J5}$ do not have to be directly connected to Vss as long as the input voltage is \leq VIL.
2. J3 does not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{V}_{\mathrm{I}}$.
3. A4 is reserved for future 16 M .
4. DNU = Do not use; Pin U2, U3, U4, U5 and U6 are reserved for respective JTAG pins: TMS, TDI, TCK, TDO and TRST. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Pin Configuration - 256K x 36, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	NC ${ }^{(3)}$	A7	$\overline{\mathrm{C}} \mathrm{E}_{1}$	$\overline{\mathrm{BW}} 3$	$\overline{\mathrm{BW}} 2$	$\overline{\mathrm{C}} \mathrm{E}_{2}$	$\overline{C E N}$	ADV/ $\overline{L D}$	A17	A8	NC
B	NC	A6	CE2	$\overline{\mathrm{BW}} 4$	$\overline{\mathrm{BW}} 1$	CLK	R/W	$\overline{\mathrm{OE}}$	$N C^{(3)}$	A9	$N C^{(3)}$
C	I/Op3	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	1/OP2
D	1/017	1/016	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/015	1/014
E	1/019	1/018	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/O13	1/O12
F	1/021	1/020	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O11	1/010
G	1/O23	1/022	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/09	1/08
H	Vss ${ }^{(1)}$	VDD ${ }^{(2)}$	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	ZZ
J	1/O25	1/024	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/07	1/06
K	1/O27	1/026	VDDQ	VDD	VSS	Vss	Vss	VDD	VDDQ	1/05	1/04
L	1/O29	1/028	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/03	1/02
M	1/031	1/030	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//01	1/00
N	I/Op4	NC	VDDQ	VSS	DNU ${ }^{(4)}$	NC	Vss ${ }^{(1)}$	Vss	VDDQ	NC	1/OP1
P	NC	NC ${ }^{(3)}$	A5	A2	DNU ${ }^{(4)}$	A1	DNU ${ }^{(4)}$	A10	A13	A14	NC
R	$\overline{\text { LBO }}$	$N C^{(3)}$	A4	A3	DNU ${ }^{(4)}$	A0	DNU ${ }^{(4)}$	A11	A12	A15	A16

Pin Configuration - 512K x 18, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
A	NC ${ }^{(3)}$	A7	$\overline{\mathrm{C} E 1}$	$\overline{\mathrm{BW}} 2$	NC	$\overline{\mathrm{C}} \mathrm{E}_{2}$	$\overline{C E N}$	ADV/ $\overline{L D}$	A18	A8	A10
B	NC	A6	CE2	NC	$\overline{\mathrm{BW}} 1$	CLK	R / \bar{W}	$\overline{\mathrm{OE}}$	NC ${ }^{(3)}$	A9	$\mathrm{NC}^{(3)}$
C	NC	NC	VDDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	I/OP1
D	NC	1/08	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/07
E	NC	1/09	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/06
F	NC	1/010	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/05
G	NC	1/011	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/04
H	Vss ${ }^{(1)}$	VDD ${ }^{(2)}$	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	Z
J	1/012	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/03	NC
K	1/013	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/02	NC
L	1/014	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/01	NC
M	1/015	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/O0	NC
N	I/OP2	NC	VDDQ	VSS	DNU ${ }^{(4)}$	NC	Vss ${ }^{(1)}$	VSS	VDDQ	NC	NC
P	NC	NC ${ }^{(3)}$	A5	A2	DNU(4)	A1	DNU ${ }^{(4)}$	A11	A14	A15	NC
R	$\overline{\text { LBO }}$	NC ${ }^{(3)}$	A4	A3	DNU ${ }^{(4)}$	A0	DNU ${ }^{(4)}$	A12	A13	A16	A17

NOTES

1. Pins H 1 and N 7 do not have to be connected directly to Vss as long as the input voltage is $\leq \mathrm{V}$ IL.
2. Pin H 2 does not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
3. Pin B9, B11, A1, R2 and P2 are reserved for a future 18M, 36M, 72M, 144M and 288M respectively.
4. DNU = Do not use. Pins P5, R5, P7, R7 and N5 are reserved for respective JTAG pins: TDI, TMS, TDO, TCK and TRST on future revisions. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

Synchronous Truth Table ${ }^{(1)}$

$\overline{\text { CEN }}$	R/W	$\overline{\mathrm{CE}}, \mathrm{CE}^{\text {2 }}{ }^{(5)}$	ADVILD	BWx	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	$1 / 0$ (One cycle later)
L	L	L	L	Valid	External	X	LOAD WRITE	$D^{(7)}$
L	H	L	L	X	External	X	LOAD READ	$Q^{(7)}$
L	X	X	H	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ${ }^{(2)}$	$D^{(7)}$
L	X	X	H	X	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ${ }^{(2)}$	$Q^{(7)}$
L	X	H	L	X	X	X	DESELECT or STOP ${ }^{(3)}$	HIZ
L	X	X	H	X	X	DESELECT / NOOP	NOOP	HIZ
H	X	X	X	X	X	X	SUSPEND ${ }^{(4)}$	Previous Value

NOTES:

1. $\mathrm{L}=\mathrm{V}$ IL, $\mathrm{H}=\mathrm{V}$ IH, $\mathrm{X}=$ Don't Care.
2. When $A D V / \overline{L D}$ signal is sampled high, the internal burst counter is incremented. The R / \bar{W} signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the R / \bar{W} signal when the first address is loaded at the beginning of the burst cycle.
3. Deselect cycle is initiated when either ($\overline{\mathrm{CE}} 1$, or $\overline{\mathrm{CE}}_{2}$ is sampled high or CE_{2} is sampled low) and $\mathrm{ADV} / \overline{\mathrm{LD}}$ is sampled low at rising edge of clock. The data bus will tri-state one cycle after deselect is initiated.
4. When $\overline{\mathrm{CEN}}$ is sampled high at the rising edge of clock, that clock edge is blocked from propagating through the part. The state of all the internal registers and the I/Os remains unchanged.
5. To select the chip requires $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{C}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H}$ on these chip enable pins. The chip is deselected if any one of the chip enables is false.
6. Device Outputs are ensured to be in High-Z during device power-up.
7. Q - data read from the device, D - data written to the device.

Partial Truth Table for Writes ${ }^{(1)}$

OPERATION	R/W	$\overline{\mathrm{BW}}_{1}$	$\overline{B W}_{2}$	$\overline{\mathrm{BW}}_{3}{ }^{(3)}$	$\overline{\mathrm{BW}} 4^{(3)}$
READ	H	X	X	X	X
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (//O[0:7], //OP1) ${ }^{(2)}$	L	L	H	H	H
WRITE BYTE 2 (//O[8:15], //OP2) ${ }^{(2)}$	L	H	L	H	H
WRITE BYTE 3 (//O[16:23], //Op3) ${ }^{(2,3)}$	L	H	H	L	H
WRITE BYTE 4 (//O[24:31], //Op4) ${ }^{(2,3)}$	L	H	H	H	L
NO WRITE	L	H	H	H	H

NOTES:

1. $L=V_{I L}, H=V_{I H}, X=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.
3. N/A for x18 configuration.

Interleaved Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{V} d \mathrm{D}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.

Linear Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{Vss}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:
5298 tbl 11

1. Uponcompletion ofthe Burstsequence the counterwraps aroundtoits initial state and continues counting.

Functional Timing Diagram ${ }^{(1)}$

CYCLE	n+29	n+30	n+31	n+32	n+33	n+34	n+35	$\mathrm{n}+36$	$\mathrm{n}+37$
CLOCK							$\boxed{\Sigma}$		
$\begin{aligned} & \text { ADDRESS }^{(2)} \\ & \left(\mathrm{A}_{0}-\mathrm{A}_{17}\right) \end{aligned}$	A29	A30	A31	A32	A33	A34	A35	A36	A37
$\begin{gathered} \text { CONTROL }^{(2)} \\ (\mathrm{R} / \overline{\mathrm{W}}, \mathrm{ADV} / \overline{\mathrm{LD}}, \overline{\mathrm{BW}} \mathrm{x}) \end{gathered}$	C29	C30	C31	C32	C33	C34	C35	C36	C37
$\begin{gathered} \text { DATA }^{(\mathbf{2})} \\ \text { I/O [0:31], I/O P[1:4] } \end{gathered}$	D/Q28	D/Q29	D/Q30	D/Q31	D/Q32	D/Q33	D/Q34	D/Q35	D/Q36

NOTES:
5298 drw 03

1. This assumes $\overline{\mathrm{CEN}}, \overline{\mathrm{CE}}_{1}, \mathrm{CE} 2$ and $\overline{\mathrm{CE}}_{2}$ are all true.
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles ${ }^{(2)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{CE}} 1^{1(1)}$	$\overline{\mathrm{C} E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	I/0	Comments
n	A0	H	L	L	L	X	X	D1	Load read
n+1	X	X	H	X	L	X	L	Q0	Burst read
n+2	A1	H	L	L	L	X	L	Q $0+1$	Load read
n+3	X	X	L	H	L	X	L	Q1	Deselect or STOP
n+4	X	X	H	X	L	x	X	Z	NOOP
n+5	A2	H	L	L	L	X	X	Z	Load read
n+6	X	X	H	X	L	X	L	Q2	Burst read
n+7	X	X	L	H	L	X	L	Q2+1	Deselect or STOP
n+8	А3	L	L	L	L	L	X	Z	Load write
n+9	X	X	H	X	L	L	X	D3	Burst write
n+10	A4	L	L	L	L	L	X	D3+1	Load write
n+11	x	X	L	H	L	X	X	D4	Deselect or STOP
n+12	X	X	H	X	L	X	X	Z	NOOP
n+13	A5	L	L	L	L	L	X	Z	Load write
n+14	A6	H	L	L	L	X	X	D5	Load read
n+15	A7	L	L	L	L	L	L	Q6	Load write
n+16	X	X	H	X	L	L	X	D7	Burst write
n+17	A8	H	L	L	L	X	X	D7+1	Load read
n+18	X	X	H	X	L	X	L	Q8	Burst read
n+19	A9	L	L	L	L	L	L	Q8+1	Load write

NOTES:

1. $\overline{\mathrm{CE}} 2$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.
2. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedence.

Read Operation ${ }^{(1)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{CE}} 1^{(2)}$	CEN	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	1/0	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
n+1	X	X	X	X	X	X	L	Q0	Contents of Address Ao Read Out

NOTES:

5298 tbl 13

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Burst Read Operation ${ }^{(1)}$

Cycle	Address	R / \bar{W}	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}_{1}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	1/0	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
$n+1$	X	X	H	X	L	X	L	Q0	Address Ao Read Out, Inc. Count
$\mathrm{n}+2$	X	X	H	X	L	X	L	Q0+1	Address A0+1 Read Out, Inc. Count
$\mathrm{n}+3$	X	X	H	X	L	X	L	Q0+2	Address A0+2 Read Out, Inc. Count
$\mathrm{n}+4$	X	X	H	X	L	X	L	Q $0+3$	Address A0+3 Read Out, Load A1
$n+5$	A1	H	L	L	L	X	L	Q0	Address Ao Read Out, Inc. Count
$\mathrm{n}+6$	X	X	H	X	L	X	L	Q1	Address A1 Read Out, Inc. Count
$\mathrm{n}+7$	A2	H	L	L	L	X	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:
5298 tbl 14

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}_{1}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	I / O	Comments
n	A 0	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	D 0	Write to Address Ao

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

Burst Write Operation ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}_{1}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	1/0	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup
n+1	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
$\mathrm{n}+2$	X	X	H	X	L	L	X	D $0+1$	Address A0+1 Write, Inc. Count
n+3	X	X	H	X	L	L	X	D0+2	Address A0+2 Write, Inc. Count
$\mathrm{n}+4$	X	X	H	X	L	L	X	D0+3	Address A0+3 Write, Load A1
$\mathrm{n}+5$	A1	L	L	L	L	L	X	Do	Address Ao Write, Inc. Count
$\mathrm{n}+6$	X	X	H	X	L	L	X	D1	Address A1 Write, Inc. Count
$n+7$	A2	L	L	L	L	L	X	D1+1	Address A1+1 Write, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE_{2} timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.

IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT ${ }^{\text {TM }}$ SRAMs with
Read Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{CE}} 1^{(2)}$	$\overline{\mathrm{C} E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	I/0	Comments
n	A0	H	L	L	L	X	X	X	AddressAo and Control meet setup
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored
n+2	A1	H	L	L	L	X	L	Q0	Address A0 Read out, Load A1
n+3	X	X	X	X	H	X	L	Q0	Clock Ignored. Data Qo is on the bus.
n+4	X	X	X	X	H	X	L	Q0	Clock Ignored. Data Qo is on the bus.
n+5	A2	H	L	L	L	X	L	Q1	Address A1 Read out, Load A2
n+6	A3	H	L	L	L	X	L	Q2	Address A2 Read out, Load A3
n+7	A4	H	L	L	L	X	L	Q3	Address A3 Read out, Load A4

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}} 2$ signals.

Write Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{CE}} 1^{(2)}$	CEN	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	1/0	Comments
n	A0	L	L	L	L	L	X	X	Address Ao and Control meet setup.
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored.
n+2	A1	L	L	L	L	L	X	Do	Write data D , Load A .
n+3	X	X	X	X	H	X	X	X	Clock Ignored.
n+4	X	X	X	X	H	X	X	X	Clock Ignored.
n+5	A2	L	L	L	L	L	X	D1	Write Data D1, Load A2
n+6	A3	L	L	L	L	L	X	D2	Write Data D2, Load A3
n+7	A4	L	L	L	L	L	X	D3	Write Data D3, Load A4

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE 2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}} 2$ signals.

Read Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/ $\overline{\mathrm{L}}$	$\overline{\mathrm{CE}} 1^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$1 / 0^{(3)}$	Comments
n	X	X	L	H	L	X	X	?	Deselected.
n+1	X	X	L	H	L	X	X	Z	Deselected.
n+2	A0	H	L	L	L	X	X	Z	Address Ao and Control meet setup.
n+3	X	X	L	H	L	X	L	Q0	Address Ao read out, Deselected.
$n+4$	A1	H	L	L	L	X	X	Z	Address A_{1} and Control meet setup.
n+5	X	X	L	H	L	X	L	Q1	Address A1 read out, Deselected.
n+6	X	X	L	H	L	X	X	Z	Deselected.
$n+7$	A2	H	L	L	L	X	X	Z	Address A2 and Control meet setup.
n+8	X	X	L	H	L	X	L	Q2	Address A2 read out, Deselected.
$\mathrm{n}+9$	X	X	L	H	L	X	X	Z	Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}_{2}$ timing transition is identical to $\overline{\mathrm{CE}}_{1}$ signal. CE2 timing transition is identical but inverted to the $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals.
3. Device outputs are ensured to be in High-Z during device power-up.

Write Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADV/̄̄D	$\overline{C E}^{(2)}$	$\overline{\text { CEN }}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	1/0	Comments
n	X	X	L	H	L	X	X	$?$	Deselected.
n+1	X	X	L	H	L	X	X	Z	Deselected.
$\mathrm{n}+2$	A0	L	L	L	L	L	X	Z	Address Ao and Control meet setup
$n+3$	X	X	L	H	L	X	X	Do	Data Do Write In, Deselected.
$n+4$	A1	L	L	L	L	L	X	Z	Address A1 and Control meet setup
$n+5$	X	X	L	H	L	X	X	D1	Data D1 Write In, Deselected.
n+6	X	X	L	H	L	X	X	Z	Deselected.
$n+7$	A2	L	L	L	L	L	X	Z	Address A2 and Control meet setup
$n+8$	X	X	L	H	L	X	X	D2	Data D2 Write In, Deselected.
$\mathrm{n}+9$	X	X	L	H	L	X	X	Z	Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance.
2. $\overline{C E}=L$ is defined as $\overline{C E}_{1}=L, \overline{C E}_{2}=L$ and $C E 2=H . \overline{C E}=H$ is defined as $\overline{C E}_{1}=H, \overline{C E}_{2}=H$ or $C E 2=L$.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range ($\mathrm{VDD}=3.3 \mathrm{~V} \pm 5 \%$)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit		
\|	니	Input Leakage Current	VDd $=$ Max., V IN $=0 \mathrm{~V}$ to V dd	-	5	$\mu \mathrm{A}$	
\|	Lا \mid	$\overline{\text { LBO }}$ Input Leakage Current ${ }^{(1)}$	$\mathrm{V} D \mathrm{D}=\mathrm{Max} ., \mathrm{V}$ IN $=0 \mathrm{~V}$ to V dD	-	30	$\mu \mathrm{A}$	
\|	LO		Output Leakage Current	Vout $=0 \mathrm{~V}$ to Vcc	-	5	$\mu \mathrm{A}$
Vol	Output Low Voltage	$\mathrm{loL}=+8 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	-	0.4	V		
VOH	Output High Voltage	$\mathrm{lOH}=-8 \mathrm{~mA}, \mathrm{~V} D \mathrm{D}=\mathrm{Min}$.	2.4	-	V		

NOTE:
5298 tbl 21

1. The $\overline{\mathrm{LBO}}$ pin will be internally pulled to VDD if it is not actively driven in the application and the ZZ pin will be internally pulled to Vss if not actively driven.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range ${ }^{(1)}(\mathrm{VDD}=3.3 \mathrm{~V} \pm 5 \%)$

Symbol	Parameter	Test Conditions	7.5ns		8ns		8.5ns		Unit
			Com'l	Ind	Com'l	Ind	Com'I	Ind	
IDD	Operating Power Supply Current	Device Selected, Outputs Open, ADV/LD $=X$, VDD $=$ Max., VIN \geq VIH or $\leq V_{\text {IL }}, f=$ fmax $^{(2)}$	275	295	250	270	225	245	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VDD $=$ Max., VIN \geq VhD or \leq VLD, $f=0^{(2,3)}$	40	60	40	60	40	60	mA
IsB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, VDD $=$ Max., VIN \geq VhD or \leq VLD, $f=f_{\text {max }}{ }^{(2,3)}$	105	125	100	120	95	115	mA
ISB3	Idle Power Supply Current	Device Selected, Outputs Open, $\overline{\mathrm{CEN}} \geq$ VIH, VDD $=$ Max., VIN \geq VHD or $\leq V L D, f=$ fmax $^{(2,3)}$	40	60	40	60	40	60	mA
Izz	Full Sleep Mode Supply Current	Device Selected, Outputs Open, $\overline{\mathrm{CEN}} \leq$ VIL, VDD $=$ Max., $\mathrm{ZZ} \geq$ VhD VIN \geq V $H D$ or $\leq V L D, f=f m A X^{(2,3)}$	40	60	40	60	40	60	mA

NOTES:
5298 tbl 22

1. All values are maximum guaranteed values.
2. At $f=f M A X$, inputs are cycling at the maximum frequency of read cycles of $1 / \mathrm{tcyc} ; f=0$ means no input lines are changing.
3. For $\mathrm{I} / \mathrm{Os} \mathrm{V} H D=\mathrm{V} D D Q-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$. For other inputs $\mathrm{VHD}=\mathrm{V} D \mathrm{D}-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$.

AC Test Load

AC Test Conditions

Input Pulse Levels	0 to 3 V
Input Rise/Fall Times	2 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	Figure 1

Figure 2. Lumped Capacitive Load, Typical Derating

AC Electrical Characteristics

(VDD $=3.3 \mathrm{~V} \pm 5 \%$, Commercial and Industrial Temperature Ranges)

Symbol	Parameter	7.5ns		8ns		8.5ns		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tCYC	Clock Cycle Time	10	-	10.5	-	11	-	ns
tch ${ }^{(1)}$	Clock High Pulse Width	2.5	-	2.7	-	3.0	-	ns
tCL ${ }^{(1)}$	Clock Low Pulse Width	2.5	-	2.7	-	3.0	-	ns
Output Parameters								
tCD	Clock High to Valid Data	-	7.5	-	8	-	8.5	ns
tCDC	Clock High to Data Change	2	-	2	-	2	-	ns
tCLZ ${ }^{(2,3,4)}$	Clock High to Output Active	3	-	3	-	3	-	ns
tCHz ${ }^{(2,3,4)}$	Clock High to Data High-Z	-	5	-	5	-	5	ns
toe	Output Enable Access Time	-	5	-	5	-	5	ns
tolz ${ }^{(2,3)}$	Output Enable Low to Data Active	0	-	0	-	0	-	ns
tohz ${ }^{(2,3)}$	Output Enable High to Data High-Z	-	5	-	5	-	5	ns
Set Up Times								
tSE	Clock Enable Setup Time	2.0	-	2.0	-	2.0	-	ns
tSA	Address Setup Time	2.0	-	2.0	-	2.0	-	ns
tSD	Data In Setup Time	2.0	-	2.0	-	2.0	-	ns
tsw	Read/Write (R/产) Setup Time	2.0	-	2.0	-	2.0	-	ns
tSADV	Advance/Load (ADV/L̄D) Setup Time	2.0	-	2.0	-	2.0	-	ns
tsc	Chip Enable/Select Setup Time	2.0	-	2.0	-	2.0	-	ns
tSB	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{X})$ Setup Time	2.0	-	2.0	-	2.0	-	ns
Hold Times								
tHe	Clock Enable Hold Time	0.5	-	0.5	-	0.5	-	nS
tHA	Address Hold Time	0.5	-	0.5	-	0.5	-	nS
tHD	Data In Hold Time	0.5	-	0.5	-	0.5	-	ns
thw	Read/Write (R/W) Hold Time	0.5	-	0.5	-	0.5	-	nS
tHADV	Advance/Load (ADV/LDD) Hold Time	0.5	-	0.5	-	0.5	-	ns
thC	Chip Enable/Select Hold Time	0.5	-	0.5	-	0.5	-	ns
thB	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{x}$) Hold Time	0.5	-	0.5	-	0.5	-	ns

NOTES:

1. Measured as HIGH above 0.6 VDDQ and LOW below 0.4 V DDQ.
2. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
3. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.
4. To avoid bus contention, the output buffers are designed such that tchz (device turn-off) is about 1 ns faster than tcLz (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because tclz is a Min. parameter that is worse case at totally different test conditions (0 deg. $\mathrm{C}, 3.465 \mathrm{~V}$) than tchz, which is a Max. parameter (worse case at 70 deg. C, 3.135 V).

Timing Waveform of Read Cycle ${ }^{(1,2,3,4)}$

Timing Waveform of Write Cycles ${ }^{(1,2,3,4,5)}$

[^0]Timing Waveform of Combined Read and Write Cycles ${ }^{(1,2,3)}$

Timing Waveform of CEN Operation ${ }^{(1,2,3,4)}$

NOTES:
2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{CF}}_{2}$ signals. For example, when $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are LOW on this waveform, CE 2 is $H I G H$,
3. $\overline{C E N}$ when sampled high on the rising edge of clock will block that $\mathrm{L}-\mathrm{H}$ transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not occur.

All internal registers in the SRAM will retain their previous state.
4. Individual Byte Write signals $(\overline{\mathrm{BW}} \mathrm{x})$ must be valid on all write and

[^1]Timing Waveform of $\overline{\mathbf{C S}}$ Operation ${ }^{(1,2,3,4)}$

4. Individual Byte Write signals ($\overline{\mathrm{B} W} \times$) must be valid on all write and burst-write cycles. A write cycle is initiated when $\mathrm{R} / \overline{\mathrm{W}}$ signal is sampled LOW. The byte write information comes in one cycle before the actual data is presented to the SRAM.

Timing Waveform of $\overline{\text { OE Operation }}{ }^{(1)}$

1. A read operation is assumed to be in progress.

Ordering Information

Datasheet Document History

12/31/99		Created new partnumber and datasheet from 71V657/59 to 71v65703/5903
04/20/00	Pg.5,6	Add JTAG resetpins to TQFP pin configuration; removedfootnote
		Add clarification note to Recommended Operating Temperature and Absolute Max Ratingstables
	Pg. 7	Add note to BGA pin configuration; corrected typo within pinout
	Pg. 21	InsertTQFP Package Diagram Outline
05/23/00		Add new package offering: $13 \mathrm{~mm} \times 15 \mathrm{~mm}$, 165 fine pitch ball grid array
	Pg. 23	Correction on 119 Ball Grid Array Package diagram Outine
07/28/00	Pg. 5-8	Remove JTAG pins from TQFP, BG119 and BQ165 pinouts, refer to IDT71V656xx and IDT71V658xx device errata sheet
	Pg. 7,8	Correct error in pinout, B 2 on BG 119 and B 1 on BQ 165 pinout
	Pg. 23	Update BG119 package diagram dimensions
11/04/00	Pg. 8	Add reference note to pin N5 on the BQ165 pinout, reserved for JTAG TRST
	Pg. 15	Addlız to DCElectrical Characteristics
12/04/02	Pg. 1-25	Changed datasheet from Preliminary to final release
	Pg. 5,6,15,16,25	Added I temp to datasheet
12/18/02	Pg. 1,2,5,6,7,8	Removed JTAG functionality for current die revision
	Pg. 7	Corrected pin configuration on the x36, 119 BGA. Switched pins I/O0 and I/OP1.
10/16/14	Pg. 1	Added green availability to Features and corrected a typo
	Pg. 15	DC Electrical Chars Table corrected typos for IoD in the Industrial Temp range for the 8.0 ns \& 8.5 ns speed grades
	Pg. 22	Removed IDT from and added green and T\&R indicators to the ordering information Added ${ }^{(1)}$ footnote annotation to 75 access speed in the ordering information table Added the corresponding footnote to the text "71v65703 only".

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SRAM category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
CY6116A-35DMB CY7C1049GN-10VXI GS8161Z36DD-200I GS88237CB-200I RMLV0408EGSB-4S2\#AA0 IDT70V5388S166BG IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6F2008V2E-LF70000 K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN AS7C164A-15PCN 515712X IDT71V67603S133BG IS62WV51216EBLL-45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI IS66WVE4M16EALL-70BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KVE33133AXI 8602501XA 5962-3829425MUA 5962-3829430MUA 5962-8866201YA 5962-8866204TA 5962-9062007MXA 59629161705MXA GS882Z18CD-150I 8413202RA 5962-8866203YA IS61WV102416DBLL-10BLI CY7C1380KV33-250AXC AS6C801655BINTR GS81284Z18B-250I AS7C34096B-10TIN GS84018CB-200I IS62WV25616EALL-55TLI IS61WV204816BLL-10TLI GS8128418B-167IV CY7C1460KV25-200BZXI CY7C1315KV18-333BZXC CY62157G30-45ZSXI 71V016SA12YG CY62126EV18LL70BVXI CY62128ELL-45SX CY62146EV30LL-45ZSXA CY7C1380KV33-167AXC

[^0]: OTES:
 address A_{2}, etc. where address bits A_{0} and A_{1} are advancing for the four word burst in the sequence defined by the state of the $\overline{\mathrm{LBO}}$ input.
 2. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when
 4. $R \bar{W} \bar{W}$ is don't care when the SRAM is bursting (ADV/ $\overline{\mathrm{LD}}$ sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the R/ $\overline{\mathrm{W}}$ signal when new address and control are loaded intothe SRAM.

 Individual Byte Write signals ($\overline{\mathrm{BW}} \mathrm{x})$ must be valid on all write and burst-write cycles. A write cycle is initiated when $\mathrm{R} / \overline{\mathrm{W}}$ signal is sampled LOW. The byte write information comes in one
 cycle before the actual data is presented to the SRAM.

[^1]: cycle before the actual data is presented to the SRAM.

