FEATURES:

- $25 n$ n parallel port access time, 35 ns cycle time
- 50 MHz serial shift frequency
- Wide x16 organization offering easy expansion
- Low power consumption (50 mA typical)
- Least/Most Significant Bit first read selected by asserting the FL/DIR pin
- Four memory status flags: Empty, Full, Half-Full, and Almost-Empty/Almost-Full
- Dual-Port zero fall-through architecture
- Available in 28-pin 300 mil plastic DIP and 28-pin SOIC
- Green parts available, see ordering information

DESCRIPTION:

The IDT72125 is a high-speed, low- power, dedicated, parallel-to-serial FIFO. This FIFO features a 16-bit parallel input portand a serial outputportwith 1,024 word depths, respectively.

The ability to bufferwide word widths(x16)maketheseFIFOs ideal forlaser printers, FAX machines, local area networks (LANs), video storage and disk/ tape controller applications.

Expansion in width and depth can be achieved using multiplechips. IDT's unique serial expansionlogic makes this possible using a minimum of pins.

The unique serial output port is driven by one data pin(SO) and one clock pin (SOCP). The Least Significant or Most Significant Bit can be read first by programming the DIR pin after a reset.

Monitoring the FIFO is eased by the availability offour status flags: Empty, Full, Half-Fulland Almost-Empty/Almost-Full. TheFulland Empty flags prevent any FIFO data overflow or underflow conditions. The Half-Full Flag is available in both single and expansion mode configurations. The Almost-Empty/AlmostFull Flag is available only in a single device mode.

The IDT72125 is fabricated using submicron CMOS technology.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

2665 drw 02

PLASTIC THIN DIP (P28, order code: TP) SOIC (SO28, order code: SO)

TOP VIEW

PIN DESCRIPTIONS

Symbol	Name	I/0	Description
D0-D15	Inputs	1	Datainputs for 16-bit wide data.
$\overline{\mathrm{RS}}$	Reset	1	When $\overline{\mathrm{RS}}$ is set low, internal READ and WRITE pointers are set to the first location of the RAM array. $\overline{\mathrm{FF}}$ and $\overline{\mathrm{FF}}$ go HIGH . $\overline{\mathrm{EF}}$ and $\overline{\mathrm{AEF}}$ go LOW. A reset is required before an initial WRITE after power-up. \bar{W} must be high during the $\overline{\mathrm{RS}}$ cycle. Also the First Load pin ($\overline{\mathrm{FL}})$ is programmed only during Reset.
W	Wirte	1	A write cycle is initiated on the falling edge of WRITE if the Full Flag (FF) is not set. Data set-up and hold times must be adhered to with respect to the rising edge of WRITE. Data is stored in the RAM array sequentially and independently of any ongoing read operation.
SOCP	Serial OutputClock	1	A serial bit read cycle is initiated on the rising edge of SOCP if the Empty Flag ($\overline{\mathrm{FF}}$) is not set. In both Depth and Serial Word Width Expansion modes, all of the SOCP pins are tied together.
$\overline{\text { FL/DIR }}$	FirstLoad/Direction	I	This is a dual purpose input used in the width and depth expansion configurations. The First Load ($\overline{\mathrm{FL}}$) function is programmed only during Reset $(\overline{\mathrm{RS}})$ and a LOW on $\overline{\mathrm{FL}}$ indicates the first device to be loaded with a byte of data. All other devices should be programmed HIGH. The Direction (DIR) pin controls shift direction after Resetand tells the device whetherto read out the LeastSignificant or MostSignificantbitfirst.
RSIX	Read Serial In Expansion	1	In the single device configuration, RSIX is set HIGH. In depth expansion or daisy chain expansion, RSIX is connected to RSOX (expansion out) of the previous device.
SO	Serial Output	0	Serial data is output on the Serial Output(SO) pin. Data is clocked out LSB or MSB depending on the Direction pin programming. During Expansion the SO pins are tied together.
$\overline{\mathrm{F}} \overline{\mathrm{F}}$	Full Flag	0	When FF goes LOW, the device is full and further WRITE operations are inhibited. When FF is HIGH, the device is notfull.
$\overline{\mathrm{EF}}$	EmptyFlag	0	When $\overline{\mathrm{EF}}$ goes LOW, the device is empty and further READ operations are inhibited. When $\overline{\mathrm{EF}}$ is HIGH, the device is notempty.
$\overline{\text { HF }}$	Half-Full Flag	0	When $\overline{\mathrm{FF}}$ is LOW, the device is more than half-full. When $\overline{\mathrm{FF}}$ is HIGH, the device is empty to half-full.
RSOX $\overline{\text { AEF }}$	Read Serial OutExpansion Almost-Empty, Almost-Full Flag	0	This is a dual purpose output. In the single device configuration (RSIX HIGH), this is an $\overline{\text { AEF }}$ output pin. When $\overline{\text { AEF }}$ is LOW, the device is empty-to- $(1 / 8$ full -1) or $(7 / 8$ full +1$)$-to-full. When $\overline{\text { AEF }}$ is HIGH, the device is $1 / 8$-full up to $7 / 8$-full. In the Expansion configuration (RSOX connected to RSIX of the next device) a pulse is sent from RSOX to RSIX to coordinate the width, depth or daisy chain expansion.
VCC	Power Supply		Single power supply of 5V.
GND	Ground		Single ground of 0 V .

STATUS FLAGS

Number of Words in FIFO				
IDT72125	$\overline{\mathrm{F}} \overline{\mathrm{F}}$	$\overline{\mathrm{AEF}}$	$\overline{\mathrm{HF}}$	$\overline{\mathrm{EF}}$
0	H	L	H	L
$1-127$	H	L	H	H
$128-512$	H	H	H	H
$513-896$	H	H	L	H
$897-1023$	H	L	L	H
1024	L	L	L	H

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TsTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
$\mathrm{VIH}^{\text {IH }}$	InputHIGH Voltage	2	-	-	V
$\mathrm{VIL}^{(1)}$	InputLOWVoltage	-	-	0.8	V
TA	Operating Temperature	0	-	+70	${ }^{\circ} \mathrm{C}$

NOTE:

1. 1.5 V undershoots are allowed for 10 ns once per cycle.

DC ELECTRICALCHARACTERISTICS

(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	IDT72125 Commercial			
		Min.	Typ.	Max.	Unit
ILI ${ }^{(1)}$	Input Leakage Current (Any Input)	-1	-	1	$\mu \mathrm{A}$
ILO ${ }^{(2)}$	OutputLeakageCurrent	-10	-	10	$\mu \mathrm{A}$
VOH	OutputLogic"1"Voltage IOUT = - 2mA ${ }^{(3)}$	2.4	-	-	V
VoL	Output Logic "0" Voltage IOUT = 8mA ${ }^{(4)}$	-	-	0.4	V
ICC1 ${ }^{(5)}$	Active Power Supply Current	-	50	100	mA
ICC2 ${ }^{(5,6,7)}$	Standby Current $(\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \mathrm{DIR}=\mathrm{VIH} ; \mathrm{SOCP}=\mathrm{VIL})$	-	4	8	mA
ICC3 ${ }^{(5,6,7)}$	Power Down Current	-	1	6	mA

NOTES:

1. Measurements with $0.4 \mathrm{~V} \leq \mathrm{VIN} \leq \mathrm{Vcc}$.
2. SOCP $=$ VIL, $0.4 \leq$ Vout $\leq \mathrm{Vcc}$.
3. For SO, lout $=-4 \mathrm{~mA}$.
4. For SO, lout $=16 \mathrm{~mA}$.
5. Tested with outputs open (IOUT $=0$).
6. $\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \mathrm{DIR}=\overline{\mathrm{W}}=\mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{SOCP}=0.2 \mathrm{~V}$; all other inputs $-\mathrm{Vcc}-0.2$.
7. Measurements are made after reset.

AC ELECTRICALCHARACTERISTICS

(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	Figure	Commercial IDT72125L25		Unit
			Min.	Max.	
ts	ParallelShiftFrequency	-	-	28.5	MHz
tSOCP	Serial Shift Frequency	-	-	50	MHz

PARALLEL INPUT TIMINGS

twc	WriteCycle Time	2	35	-	ns
twPW	WritePulseWidth	2	25	-	ns
twr	Write Recovery Time	2	10	-	ns
tDS	Data Set-up Time	2	12	-	ns
tDH	Data Hold Time	2	0	-	ns
twEF	Write High to $\overline{\text { EF HIGH }}$	5,6	-	35	ns
twFF	Write Low to $\overline{\text { FF LOW }}$	4,7	-	35	ns
twF	Write Low to Transitioning $\overline{\mathrm{HF}}, \overline{\text { AEF }}$	8	-	35	ns
twPF	WritePulseWidthAfterFF HIGH	7	25	-	ns

SERIAL OUTPUT TIMINGS

tSOCP	Serial Clock Cycle Time	3	20	-	ns
tsocw	Serial ClockWidth HIGH/LOW	3	8	-	ns
tSOPD	SOCP Rising Edge to SO Valid Data	3	-	14	ns
tSOHZ	SOCP Rising Edge to SO at High-Z ${ }^{(1)}$	3	3	14	ns
tSOLZ	SOCP Rising Edge to SO at Low-Z ${ }^{(1)}$	3	3	14	ns
tSOCEF	SOCP Rising Edge to EF LOW	5,6	-	35	ns
tSOCFF	SOCP Rising Edge to $\overline{\text { FF }}$ HIGH	4,7	-	35	ns
tSOCF	SOCP Rising Edge to Transitioning $\overline{\mathrm{HF}}, \overline{\mathrm{AEF}}$	8	-	35	ns
tRefso	SOCP Delay After $\overline{\mathrm{EF}}$ HIGH	6	35	-	ns

RESET TIMINGS

tRSC	ResetCycleTime	1	35	-	ns
tRS	Reset PulseWidth	1	25	-	ns
tRSS	ResetSet-up Time	1	25	-	ns
tRSR	Reset Recovery Time	1	10	-	ns

EXPANSION MODE TIMINGS

tFLS	$\overline{\text { FL Set-up Time to } \overline{\mathrm{RS}} \text { Rising Edge }}$	9	7	-	ns
tFLH	$\overline{\text { FL Hold Time to } \overline{\mathrm{RS}} \text { Rising Edge }}$	9	0	-	ns
tDIRS	DIR Set-up Time to SOCP Rising Edge	9	10	-	ns
tDIRH	DIR Hold Time from SOCP Rising Edge	9	5	-	ns
tsoXD1	SOCP Rising Edge to RSOX Rising Edge	9	-	15	ns
tsoXD2	SOCP Rising Edge to RSOX Falling Edge	9	-	15	ns
tsIXS	RSIX Set-up Time to SOCP Rising Edge	9	5	-	ns
tsIXPW	RSIXPulseWidth	9	10	-	ns

NOTE:

1. Values guaranteed by design.

AC TEST CONDITIONS

InputPulse Levels
InputRise/Fall Times
Input Timing Reference Levels
OutputReference Levels
OutputLoad

GND to 3.0 V
5ns
1.5 V
1.5 V

See Figure A

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Condition	Max.	Unit
CIN	InputCapacitance	VIN $=0 \mathrm{~V}$	10	pF
CoUT	OutputCapacitance	VoUT $=0 \mathrm{~V}$	12	pF

NOTE:

1. Characterized values, not currently tested.

FUNCTIONALDESCRIPTION

PARALLELDATAINPUT

The device must be reset before beginning operation so that all flags are setto their initial state. In width or depth expansion the FirstLoad pin $(\overline{\mathrm{FL}})$ must be programmed to indicate the firstdevice.

The data is written into the FIFO in parallel through the D0-D15 inputdata lines. A write cycle is initiated on the fallingedge oftheWrite (\bar{W}) signal provided the Full Flag ($\overline{\mathrm{FF}}$) is not asserted. Ifthe \bar{W} signal changes fromHIGH-to-LOW and the Full Flag ($\overline{\mathrm{FF}}$) is already set, the write line is internally inhibited internally from incrementing the write pointer and no write operation occurs.

Dataset-up and hold timesmustbemetwith respecttothe risingedgeofWrite. On the rising edge of \bar{W}, the write pointer is incremented. Write operations can occur simultaneously or asynchronously with read operations.

or equivalent circuit
Figure A. Output Load

* Includes scope and jig capacitances.

SERIALDATAOUTPUT

The serial data is outputon the SO pin. The data is clocked out on the rising edge of SOCP providing the Empty Flag ($\overline{\mathrm{EF}}$) is notasserted. Ifthe Empty Flag is asserted then the nextdataword is inhibited from moving to the outputregister and being clocked out by SOCP.

The serial word is shifted outLeastSignificantBitorMostSignificantBitfirst, depending on the $\overline{F L} / D I R$ level during operation. ALOW on DIR will cause the Least Significant Bit to be read out first. A HIGH on DIR will cause the Most Significant Bitto be read outfirst.

NOTES:

[^0]Figure 1. Reset

Figure 2. Write Operation

Figure 3. Read Operation

Figure 4. Full Flag from Last Write to First Read

NOTE:

1. SOCP should not be clocked until $\overline{\mathrm{EF}}$ goes HIGH.

Figure 5. Empty Flag from Last Read to First Write
\qquad

NOTES:

1. Once $\overline{E F}$ has gone LOW and the last bit of the final word has been shifted out, SOCP should not be clocked until $\overline{E F}$ goes HIGH.
2. In Single Device Mode, SO will not tri-state except after Reset. It will retain the last valid data.

Figure 6. Empty Boundary Condition Timing

NOTE:

1. Single Device Mode will not tri-state but will retain the last valid data.

Figure 7. Full Boundary Condition Timing

Figure 8. Half-Full, Almost-Full and Almost-Empty Timings

Figure 9. Serial Read Expansion

OPERATING CONFIGURATIONS

SINGLE DEVICE MODE

The device must be reset before beginning operation so that all flags are set to location zero. In the standalone case, the RSIX line is tied HIGH and indicates single device operation to the device. TheRSOX/ $\overline{A E F}$ pin defaults to $\overline{\text { AEF }}$ and outputs the Almost-Empty and Almost-Full Flag.

WIDTH EXPANSION MODE

In the cascaded case, word widths of more than 16 bits can be achieved by using more than one device. By tying the RSOX and RSIX pins together, as shown in Figure 11, and programming which is the Least Significant Device, a cascaded serial word is achieved. The Least Significant Device is programmed by a LOW on the FL/DIR pin during reset. All other devices should be programmed HIGH on the FL/DIR pin at reset.

Figure 10. Single Device Configuration

TABLE 1 - RESET AND FIRST LOAD TRUTH TABLE-
 SINGLEDEVICE CONFIGURATION

Mode		Inputs			Internal Status			Outputs		
		$\overline{\mathrm{FL}}$	DIR	Read Pointer	Write Pointer	$\overline{\mathrm{AEF}}, \overline{\mathrm{EF}}$	$\overline{\mathrm{FF}}$	$\overline{\mathrm{HF}}$		
Reset	0	X	X	LocationZero	LocationZero	0	1	1		
Read/Write	1	X	0,1	Increment $^{(1)}$	Increment $^{(1)}$	X	X	X		

NOTE:

1. Pointer will increment if appropriate flag is HIGH

The Serial Data Output(SO) of each device in the serial word mustbetied together. Since the SO pin is three stated, only the device which is currently shifting out is enabled and driving the 1-bitbus. NOTE: After reset, the level on the $\overline{F L} / D I R$ pindecides iftheLeastSignificantorMostSignificantBitis read first out of each device.

The three flag outputs, Empty ($\overline{\mathrm{EF}}$), Half-Full ($\overline{\mathrm{HF}}$) and Full $(\overline{\mathrm{FF}})$, should be taken from the Most Significant Device (in the example, FIFO \#2). The Almost-Empty/Almost-Full flag is not available. The RSOX pin is used for expansion.

2665 drw14
Figure 11. Width Expansion for 32-bit Parallel Data In

OPERATING CONFIGURATIONS

SINGLE DEVICE MODE

The IDT72125 can easily be adapted to applications requiring greater than 1,024 words. Figure 12demonstrates Depth Expansionusing three IDT72125s and an 74FCT138 Address Decoder. Any depth can be attained by adding additional devices. The Address Decoder is necessary to determine which FIFO is being written. A word ofdatamustbe written sequentially into eachFIFO so that the data will be read in the correct sequence. These devices operate in the Depth Expansion Mode when the following conditions are met:

1. Thefirstdevice mustbe programmed by holding FLLOW at Reset. All other devices must be programmed by holding FL HIGH at reset.
2. The Read Serial Out Expansion pin (RSOX) of each device must be tied to the Read Serial InExpansion pin (RSIX) of the next device (see Figure 12).
3. External logic is needed to generate composite Empty, Half-Full and Full Flags. This requires the ORing of all $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ Flags.
4. The Almost-Empty and Almost-Full Flag is not available due to using the RSOX pin for expansion.

COMPOUND EXPANSION (DAISY CHAIN) MODE

These FIFOs can beexpanded in both depth and width as Figure 13indicates:

1. TheRSOX-to-RSIX expansion signals arewrapped around sequentially.
2. The write (\bar{W}) signal is expanded in width.
3. Flag signals are only taken from the MostSignificantDevices.
4. The LeastSignificantDevice in the array mustbe programmed withaLOW on $\overline{F L} / D I R$ during reset.

Figure 12. A $3 K \times 16$ Parallel-to-Serial FIFO using the IDT72125

TABLE 2 - RESET AND FIRST LOAD TRUTH TABLEWIDTH/DEPTH COMPOUND EXPANSION MODE

Mode		Inputs			Internal Status		Outputs	
		$\overline{\mathrm{FL}}$	DIR	Read Pointer	Write Pointer	$\overline{\mathrm{E} \bar{F}}$	$\overline{\mathrm{HF}}, \overline{\mathrm{FF}}$	
Reset-FirstDevice	0	0	X	LocationZero	LocationZero	0	1	
Reset All Other Devices	0	1	X	LocationZero	LocationZero	0	1	
ReadWrite	1	X	0,1	X	X	X	X	

NOTE:

1. $\overline{\mathrm{RS}}=$ Reset Input, $\overline{F L} / F I R=$ First Load/Direction, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{FF}}=$ Half-Full Flag Output, $\overline{\mathrm{FF}}=$ Full Flag Output.

Figure 13. A 3K x 32 Parallel-to-Serial FIFO using the IDT72125

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for FIFO category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
CY7C425-25LMB CY7C454-14LMB IDT7202LA50J CY7C464A-10JI 5962-8866903YA 5962-8866905XA 5962-8986302YA 59629071503MXA 5962-9961502QYA 5962-9158505MXA 5962-8986305ZA 5962-8986305UA 5962-8986303XA 5962-8986302ZA 596289523052A 5962-8866904XA 72241L10JG CY7C433-10AXC 5962-8986306YA SN74V293PZAEP CY7C429-20JC CY7C433-15JC 7200L25JI 7202LA12TPG 7204L25SO 72125L25SOG 72V04L35J IDT72231L25PF 72265LA10PFG 72V293L7-5PFGI 72V241L10PF CY7C429-10PC 7203L50P 72T1845L5BB SN74ACT7806-20DL SN74ACT2229DW SN74ACT7804-20DL SN74ACT7814-20DL SN74ALVC7804-40DL CY7C4225V-15ASC SN74V245-10PAG 72210L10TPG 72V03L15JG CY7C425-20JXCT CY7C425-20JXC 7282L12PAG SN74ACT7802-25FN SN74V215-7PAG SN74V235-7PAG SN74V293-10PZA

[^0]: 1. $\overline{\mathrm{EF}}, \overline{\mathrm{FF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{AEF}}$ may change status during Reset, but flags will be valid at trsc.
 2. SOCP should be in the steady LOW or HIGH during trss. The first LOW-HIGH (or HIGH-LOW) transition can begin after tRSR.
