FEATURES:

- 64×9-bit organization (IDT72421)
- 256×9-bit organization (IDT72201)
- 512×9-bit organization (IDT72211)
- 1,024 x 9-bit organization (IDT72221)
- 2,048 x 9-bit organization (IDT72231)
- $4,096 \times 9$-bit organization (IDT72241)
- 8,192 x 9-bit organization (IDT72251)
- 10 ns read/write cycle time
- Read and Write Clocks can be independent
- Dual-Ported zero fall-through time architecture
- Empty and Full Flags signal FIFO status
- Programmable Almost-Empty and Almost-Full flags can be set to any depth
- Programmable Almost-Empty and Almost-Full flags default to Empty+7, and Full-7, respectively
- Output enable puts output data bus in high-impedance state
- Advanced submicron CMOS technology
- Available in the 32-pin plastic leaded chip carrier (PLCC) and 32-pin Thin Quad Flat Pack (TQFP)
- For through-hole product please see the IDT72420/72200/72210/ 72220/72230/72240 data sheet
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

DESCRIPTION:

The IDT72421/72201/72211/72221/72231/72241/72251 SyncFIFO ${ }^{\text {M }}$ are very high-speed, low-power First-In, First-Out (FIFO) memories with clocked read and write controls. These devices have a 64, 256, 512, 1,024, $2,048,4,096$, and $8,192 \times 9$-bitmemory array, respectively. These FIFOs are applicable for a wide variety ofdata buffering needs such as graphics, local area networks and interprocessor communication.

These FIFOs have 9-bit input and outputports. The input port is controlled by a free-running clock (WCLK), and two write enable pins (可EN1, WEN2). Data is written into the Synchronous FIFO on every rising clock edge when thewrite enablepins are asserted. The outputportis controlled by another clock pin (RCLK) and two read enable pins ($\overline{\mathrm{REN} 1}, \overline{\mathrm{REN}})$. The Read Clock can be tied to the Write Clock for single clock operation or the two clocks can run asynchronous of one another for dual-clock operation. An output enable pin $(\overline{\mathrm{OE}})$ is provided on the read port for three-state control of the output.

The Synchronous FIFO s have two fixed flags, Empty ($\overline{\mathrm{EF}})$ and Full ($\overline{\mathrm{FF}}$). Two programmable flags, Almost-Empty ($\overline{\mathrm{PAE}}$) and Almost-Full ($\overline{\mathrm{PAF}})$, are provided for improved system control. The programmable flags default to Empty +7 and Full-7 for $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$, respectively. The programmable flag offsetloading iscontrolled by a simple state machine and is initiated by asserting the load pin ($\overline{\mathrm{LD}}$).

TheseFIFOsarefabricatedusing high-speed submicronCMOStechnology.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

2655 drw02a

PLCC (J32-1, order code: J)

 TOP VIEW
PIN DESCRIPTIONS

Symbol	Name	1/0	Description
Do-D8	Datalnputs	1	Data inputs for a9-bit bus.
$\overline{\mathrm{R}} \overline{\mathrm{S}}$	Reset	1	When $\overline{R S}$ is set LOW, internal read and write pointers are set to the firstlocation of the RAM array, $\overline{F F}$ and $\overline{\text { PAF }}$ go HIGH, and $\overline{\text { PAE }}$ and EF go LOW. A reset is required before an initial WRITE after power-up.
WCLK	WriteClock	1	Data is written into the FIFO on a LOW-to-HIGH transition of WCLK when the Write Enable(s) are asserted.
WEN1	Write Enable 1	I	If the FIFO is configured to have programmable flags, $\overline{\text { WEN } 1 ~ i s ~ t h e ~ o n l y ~ w r i t e ~ e n a b l e ~ p i n . ~ W h e n ~} \overline{W E N 1}$ is LOW, data is written into the FIFO on every LOW-to-HIGH transition WCLK. If the FIFO is configured to have two write enables, WEN1 must be LOW and WEN2 must be HIGH to write data into the FIFO. Data will not be written into the FIFO if the FF is LOW.
	Write Enable 2/ Load	1	The FIFO is configured at reset to have either two write enables or programmable flags. If WEN2/LD is HIGH at reset, this pin operates as a second write enable. IfWEN2/LD is LOW at reset, this pin operates as a control to load and read the programmable flag offsets. If the FIFO is configured to have two write enables, $\overline{\text { WEN1 }}$ must be LOW and WEN2 must be HIGH to write data into the FIFO. Data will not be written into the FIFO if the FF is LOW. If the FIFO is configured to have programmable flags, WEN2/LD is held LOW to write or read the programmableflagoffsets.
Q0-Q8	DataOutputs	0	Data outputs for a9-bitbus.
RCLK	Read Clock	1	Data is read from the FIFO on a LOW-to-HIGH transition of RCLK when REN1 and $\overline{\text { EEN2 }}$ are asserted.
REN1	Read Enable 1	1	When $\overline{R E N 1}$ and $\overline{R E N} 2$ are LOW, data is read from the FIFO on every LOW-to-HIGH transition of RCLK. Data will not be read from the FIFO if the EF is LOW.
$\overline{\text { REN2 }}$	Read Enable 2	I	When $\overline{\mathrm{EEN} 1}$ and $\overline{\mathrm{REN} 2}$ are LOW, data is read from the FIFO on every LOW-to-HIGH transition of RCLK. Data will not be read from the FIFO if the $\overline{E F}$ is LOW.
$\overline{\mathrm{O}} \mathrm{E}$	OutputEnable	1	When $\overline{\text { OE }}$ is LOW, the data output bus is active. If $\overline{\mathrm{OE}}$ is HIGH, the output data bus will be in a high-impedance state.
EF	EmptyFlag	0	When EF is LOW, the FIFO is empty and further data reads from the output are inhibited. When EF is HIGH, the FIFO is not empty. EF is synchronized to RCLK.
$\overline{\text { PA } \bar{E}}$	Programmable Almost-Empty Flag	0	When $\overline{\text { PAE }}$ is LOW, the FIFO is almost-empty based on the offset programmed into the FIFO. The default offset at reset is Empty+7. $\overline{\text { PAE }}$ is synchronized to RCLK.
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	0	When PAF is LOW, the FIFO is almost-full based on the offset programmed into the FIFO. The default offset at reset is Full-7. $\overline{\text { PAF }}$ is synchronized to WCLK.
$\overline{\text { FF }}$	Full Flag	0	When \bar{F} is LOW, the FIFO is full and further data writes into the input are inhibited. When FF is HIGH, the FIFO is not full. FF is synchronized to WCLK.
Vcc	Power		One +5 volt power supply pin.
GND	Ground		One 0 volt ground pin.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'l \& Ind'l	Unit
VTERM	Terminal Voltagewith Respectto GND	-0.5 to +7.0	V
TstG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
Iout	DC OutputCurrent	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	SupplyVoltage Commercial/Industrial	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
VIH	InputHigh Voltage Commercial/Industrial	2.0	-	-	V
VIL	InputLowVoltage Commercial/Industrial	-	-	0.8	V
TA_{A}	Operating Temperature Commercial	0	-	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{TA}_{\mathrm{CA}}$	Operating Temperature Industrial	-40	-	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CH ARACTERISTICS

(Commercial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	IDT72421IDT72201IDT72211IDT72221IDT72231IDT72241Com'l and Ind'I ${ }^{(1)}$tcLK $=10,15,25 \mathrm{~ns}$			IDT72251 Com'I and Ind' tcle $=10,15,25 \mathrm{~ns}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
$\underline{1 L 12}$	Input Leakage Current (Any Input)	-1	-	1	-1	-	1	$\mu \mathrm{A}$
$\mathrm{ILO}{ }^{(3)}$	OutputLeakage Current	-10	-	10	-10	-	10	$\mu \mathrm{A}$
Voh	Output Logic "1" Voltage, $\mathrm{IoH}=-2 \mathrm{~mA}$	2.4	-	-	2.4	-	-	V
Vol	Output Logic "0" Voltage, loc=8mA	-	-	0.4	-	-	0.4	V
$\operatorname{Icc1}^{(4,5,6)}$	Active Power Supply Current	-	-	35	-	-	50	mA
Icc2 ${ }^{(4,7)}$	Standby Current	-	-	5	-	-	5	mA

NOTES:

1. Industrial temperature range product for the 15 ns and 25 ns speed grades are available as standard product.
2. Measurements with $0.4 \leq \mathrm{V} \mathbb{I} \leq \mathrm{Vcc}$.
. $\overline{\mathrm{OE}} \geq$ VIH, $0.4 \leq$ Vout $\leq \mathrm{Vcc}$.
3. Tested with outputs open (lout $=0$).
4. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz .
5. Typical $\mathrm{ICC1}=1.7+0.7^{*} \mathrm{fs}+0.02^{*} \mathrm{C} \mathrm{L}^{\star f s}$ (in mA).

These equations are valid under the following conditions:
$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, fs $=$ WCLK frequency $=$ RCLK frequency (in MHz, using TTL levels), data switching at $\mathrm{fs} / 2, \mathrm{CL}=$ capacitive load (in pF).
7. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{GND}+0.2 \mathrm{~V}$, except RCLK and WCLK, which toggle at 20 MHz .

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Commercial		Com'l \& Ind' ${ }^{(1)}$		Com'l \& Ind'(1)		
		IDT72421L10IDT72201L10IDT72211L10IDT72221L10IDT72231L10IDT72241L10IDT72251L10		IDT72421L15 IDT72201L15 IDT72211L15 IDT72221L15 IDT72231L15 IDT72241L15 IDT72251L15		IDT72421L25IDT72201L25IDT72211L25IDT72221L25IDT72231L25IDT72241L25IDT72251L25		
		Min.	Max.	Min.	Max.	Min.	Max.	Unit
fs	Clock Cycle Frequency	-	100	-	66.7	-	40	MHz
tA	DataAccess Time	2	6.5	2	10	2	15	ns
tcle	Clock Cycle Time	10	-	15	-	25	-	ns
tclek	Clock High Time	4.5	-	6	-	10	-	ns
tclek	Clock Low Time	4.5	-	6	-	10	-	ns
DS	Data Setup Time	3	-	4	-	6	-	ns
DH	Data Hold Time	0.5	-	1	-	1	-	ns
tens	Enable Setup Time	3	-	4	-	6	-	ns
EENH	Enable Hold Time	0.5	-	1	-	1	-	ns
tRS	ResetPulseWidth ${ }^{(2)}$	10	-	15	-	15	-	nS
tRSS	ResetSetup Time	8	-	10	-	15	-	ns
tRSR	Reset Recovery Time	8	-	10	-	15	-	ns
tRSF	Resetto Flag and Output Time	-	10	-	15	-	25	ns
tolz	Output Enable to Output in Low-Z ${ }^{(3)}$	0	-	0	-	0	-	ns
toe	OutputEnable to Output Valid	3	6	3	8	3	13	ns
tohz	Output Enable to Outputin High-Z ${ }^{(3)}$	3	6	3	8	3	13	ns
twFF	Write Clock to Full Flag	-	6.5	-	10	-	15	ns
tREF	Read Clock to Empty Flag	-	6.5	-	10	-	15	ns
tpaF	Write Clock to Programmable Almost-Full Flag	-	6.5	-	10	-	15	ns
tPAE	Read Clock to Programmable Almost-Empty Flag	-	6.5	-	10	-	15	ns
tskEW1	Skew time between Read Clock \& Write Clock for Empty Flag \& Full Flag	5	-	6	-	10	-	ns
tskEW2	Skew time between Read Clock \& Write Clock for Almost-Empty Flag \& Programmable Almost-Full Flag	14	-	15	-	18	-	ns

NOTES:

1. Industrial temperature range product for the 15 ns and 25 ns speed grades are available as standard product
2. Pulse widths less than minimum values are not allowed.
3. Values guaranteed by design, not currently tested.

AC TEST CONDITIONS

In Pulse Levels	GND to 3.0 V
Input Rise/Fall Times	3 ns
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	See Figure 1

CAPACITANCE $\left(\mathrm{Ta}_{\mathrm{a}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Conditions	Max.	Unit
CIN $^{(2)}$	InputCapacitance	VIN $=0 \mathrm{~V}$	10	pF
CouT $^{(1,2)}$	OutputCapacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected $(\mathrm{OE} \geq \mathrm{V} \mathrm{IH})$.
2. Characterized values, not currently tested.

Figure 1. Output Load

*includesjig and scope capacitances

SIGNAL DESCRIPTIONS

INPUTS:

DATA IN (D0 - D8)

Datainputs for 9-bitwide data.

CONTROLS:

RESET ($\overline{\mathrm{RS}}$)

Reset is accomplished whenever the Reset $(\overline{\mathrm{RS}})$ input is taken to a LOW state. During reset, both internal read and write pointers are set to the first location. A reset is required after power-up before a write operation can take place. TheFull Flag(FF) and Programmable Almost-Full flag($\overline{\mathrm{PAF}}$) will be reset to HIGH after tRSF. The Empty Flag (EF) and Programmable Almost-Empty flag (PAE) will be resetto LOW after tRSF. During reset, the output register is initializedtoallzeros and theoffsetregisters are initialized totheirdefaultvalues.

WRITE CLOCK (WCLK)

A write cycle is initiated on the LOW-to-HIGH transition of the Write Clock (WCLK). Datasetup and holdtimesmustbemetin respectotheLOW-to-HIGH transition of WCLK. The Full Flag ($\overline{\mathrm{FF}}$) and Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) are synchronized with respect to the LOW-to-HIGH transition ofWCLK.

The Write and Read Clocks can be asynchronous or coincident.

WRITE ENABLE 1 ($\overline{\mathrm{WEN}} \mathbf{1}$)

If the FIFO is configured for programmable flags, Write Enable $1(\overline{\mathrm{WEN}})$ isthe only enable control pin. Inthis configuration, whenWriteEnable1 (VEN1) is LOW, data can be loaded into the input register and RAM array onthe LOW-to-HIGHtransition ofevery WriteClock(WCLK). Dataisstored inthe RAM array sequentially and independently of any ongoing read operation.

Inthis configuration, whenWrite Enable 1(VWEN1) is HIGH, the inputregister holds the previous data and no new datais allowed to be loaded intothe register.

If the FIFO is configured to have two write enables, which allows for depth expansion, there are two enable control pins. See Write Enable 2 paragraph below for operation in this configuration.

To prevent data overflow, the Full Flag ($\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, the Full Flag ($\overline{\mathrm{FF}}$) will goHIGH after twFF, allowing a valid write to begin. Write Enable 1(VEN1) is ignored when the FIFO is full.

READ CLOCK (RCLK)

Datacanbe read on the outputs on the LOW-to-HIGHtransition ofthe Read Clock (RCLK). The Empty Flag ($\overline{\mathrm{EF}}$) and Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ are synchronized with respectto the LOW-to-HIGH transition of RCLK.

The Write and Read Clocks can be asynchronous or coincident.

READ ENABLES ($\overline{\text { REN1 }}, \overline{\text { REN2 }}$)

When both Read Enables ($\overline{\operatorname{REN1}}, \overline{\mathrm{REN} 2}$) are LOW, data is read from the RAM array to the output register on the LOW-to-HIGH transition of the Read Clock (RCLK).

Wheneither Read Enable($\overline{\operatorname{REN1}}, \overline{\mathrm{REN} 2})$ is HIGH , the outputregister holds the previous data and no new data is allowed to be loaded into the register.

When all the data has been read from the FIFO, the Empty Flag ($\overline{\mathrm{EF}}$) will go LOW, inhibiting further read operations. Once a valid write operation has been accomplished, the Empty Flag ($\overline{\mathrm{EF}})$ will go HIGH after tREF and a valid read can begin. The Read Enables ($\overline{\operatorname{REN} 1}, \overline{\text { REN2 }}$) are ignored when the FIFO is empty.

OUTPUTENABLE ($\overline{\mathrm{OE}})$

When Output Enable ($\overline{\mathrm{OE}})$ is enabled (LOW), the parallel output buffers receive data from the output register. When Output Enable $(\overline{\mathrm{OE}})$ is disabled (HIGH), the Q output data bus is in a high-impedance state.

WRITE ENABLE 2/LOAD (WEN2/LD $)$

This is a dual-purpose pin. The FIFO is configured at Reset to have programmableflags orto havetwo writeenables, whichallows depth expansion. IfWrite Enable 2/Load (WEN2/LD $)$ is set HIGH at Reset ($\overline{\mathrm{RS}}=\mathrm{LOW}$), this pin operates as a second write enable pin.

If the FIFO is configured to have two write enables, when Write Enable ($\overline{\mathrm{WEN} 1}$) is LOW and Write Enable 2/Load (WEN2/LD $)$ is HIGH, data can be loaded into the input register and RAM array on the LOW-to-HIGH transition of every WriteClock (WCLK). Data is stored inthe RAM array sequentially and independently of any ongoing read operation.

In this configuration, when Write Enable (VEN1) is HIGH and/or Write Enable 2/Load (WEN2/ $\overline{\mathrm{LD}}$) is LOW, the input register holds the previous data and no new data is allowed to be loaded into the register.

To prevent data overflow, the Full Flag ($\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, the Full Flag ($\overline{\mathrm{FF}})$ will go HIGH aftertwFF, allowing a valid write to begin. Write Enable 1 (WEN1) and Write Enable 2/Load (WEN2/(̄D) are ignored when the FIFO is full.

TheFIFO is configured to have programmable flagswhentheWrite Enable 2/Load (WEN2/(̄D) is set LOW at Reset ($\overline{\mathrm{RS}}=\mathrm{LOW}$). The IDT72421/72201/ 72211/72221/72231/72241/72251 devices containfour 8-bitoffsetregisters which can be loaded with data onthe inputs, or read onthe outputs. See Figure 3 for details of the size of the registers and the default values.

IftheFIFO is configured to have programmable flagswhentheWriteEnable 1($\overline{\mathrm{WEN} 1}$) andWriteEnable2/Load(WEN2/(̄D) are setLOW, dataon the inputs Diswritten intothe Empty (LeastSignificantBit) Offsetregister onthefirstLOW-to-HIGHtransitionoftheWriteClock(WCLK). Dataiswrittenintothe Empty(Most SignificantBit)Offsetregister onthe secondLOW-to-HIGHtransitionoftheWrite Clock (WCLK), into the Full (Least Significant Bit) Offset register on the third transition, and into the Full (Most Significant Bit) Offset register on the fourth transition. Thefifth transition oftheWriteClock(WCLK)again writestothe Empty (LeastSignificantBit)Offsetregister.

However, writing all offset registers does nothave to occur at onetime. One or two offset registers can be written and then by bringing the Write Enable 2/ Load (WEN2/(̄D) pin HIGH, the FIFO is returned to normal read/write operation. When theWrite Enable 2/Load(WEN2/(D) pinissetLOW, theWrite Enable $1(\overline{\mathrm{WEN}})$ is LOW, the next offset register in sequence is written.

$\overline{\mathrm{LD}}$	$\overline{\text { WEN1 }}$	WCLK	Selection
0	0	\square	Empty Offset(LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB)
0	1	\square	No Operation
1	0	\square	Write Into FIFO
1	1	\square	No Operation

NOTE:

1. For the purposes of this table, WEN2 $=\mathrm{V} / \mathrm{H}$.
2. The same selection sequence applies to reading from the registers. $\overline{\mathrm{REN} 1}$ and $\overline{\mathrm{REN} 2}$ are enabled and read is performed on the LOW-to-HIGH transition of RCLK.

Figure 2. Write Offset Register

The contents of the offset registers canbe read on the outputlineswhenthe Write Enable 2/Load(WEN2/LD) pinissetLOWandbothReadEnables($\overline{\mathrm{REN1}}$, REN2) are setLOW. Data can be read on the LOW-to-HIGH transition of the Read Clock (RCLK).

A read and write should not be performed simultaneously to the offset registers.

IDT72421-64 x 9-BIT

IDT72211-512 x 9-BIT

IDT72201-256 x 9-BIT

IDT72221-1,024 x 9-BIT

IDT72251 8,192 x 9-BIT

Figure 3. Offset Register Location and Default Values

OUTPUTS:

FULL FLAG (FF)

The Full Flag $(\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operation, when the device is full. If no reads are performed after Reset $(\overline{\mathrm{RS}})$, the Full Flag ($\overline{\mathrm{FF}})$ will go LOW after 64 writes for the IDT72421, 256 writes for the IDT72201,512 writes for the IDT72211, 1,024 writes for the IDT72221, 2,048 writes for the IDT72231, 4,096 writes for the IDT72241, and 8,192 writes for the IDT72251.

The Full Flag ($\overline{\mathrm{FF}}$) is synchronized with respect to the LOW-to-HIGH transition ofthe Write Clock (WCLK).

EMPTY FLAG ($\overline{E F}$)

The Empty Flag(EF) will go LOW, inhibiting further read operations, when the read pointer is equal to the write pointer, indicating the device is empty.

The Empty Flag ($\overline{\mathrm{EF}}$) is synchronized with respect to the LOW-to-HIGH transition of the Read Clock (RCLK).

PROGRAMMABLE ALMOST-FULL FLAG ($\overline{\text { PAF }})$

The Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) will go LOW when the FIFO reaches the almost-full condition. If no reads are performed after Reset $(\overline{\mathrm{RS}})$, the Programmable Almost-Fullflag ($\overline{\mathrm{PAF}})$ will goLOW after ($64-\mathrm{m}$) writesfor the IDT72421, (256-m) writes for the IDT72201, (512-m) writes for the IDT72211,
(1,024-m) writes for the IDT72221, (2,048-m) writes for the IDT72231, (4,096m) writes for the IDT72241, and (8,192-m) writes for the IDT72251. The offset " m " is defined in the Full offset registers.

Ifthere is no Full offsetspecified, the Programmable Almost-Full flag ($\overline{\text { PAF }})$ will go LOW at Full-7 words.

The Programmable Almost-Fullflag ($\overline{\mathrm{PAF}}$) is synchronized with respectto the LOW-to-HIGH transition of the WriteClock (WCLK).

PROGRAMMABLE ALMOST-EMPTY FLAG ($\overline{\text { PAE }})$

The Programmable Almost-Empty flag $(\overline{\mathrm{PAE}})$ will go LOW when the read pointer is " $n+1$ " locations less than the write pointer. The offset " n " is defined in the Empty Offset registers. If no reads are performed after Reset the Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go HIGH after " $\mathrm{n}+1$ " for the IDT72421/72201/72211/72221/72231/72241/72251.

Ifthere is no Empty offset specified, the Programmable Almost-Empty flag $(\overline{\mathrm{PAE}})$ will go LOW at Empty +7 words.

The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ is synchronized with respect to the LOW-to-HIGH transition of the Read Clock (RCLK).

DATA OUTPUTS (Q0-Q8)

Data outputs for a 9-bit wide data.

TABLE 1 - STATUS FLAGS

NUMBER OF WORDS IN FIFO			$\overline{\text { FF }}$	$\overline{\text { PAF }}$	$\overline{\mathrm{P}} \overline{\mathrm{A}}$	$\overline{\mathrm{E}}$
IDT72421	IDT72201	IDT72211				
0	0	0	H	H	L	L
1 to ${ }^{(1)}$	1 ton ${ }^{(1)}$	1 ton ${ }^{(1)}$	H	H	L	H
$(\mathrm{n}+1)$ to (64-(m+1))	$(\mathrm{n}+1) \mathrm{to}(256-(\mathrm{m}+1)$)	$(\mathrm{n}+1) \mathrm{to}(512-(\mathrm{m}+1)$)	H	H	H	H
$(64-m)^{(2)}$ to 63	(256-m) ${ }^{(2)}$ to 255	$(512-m)^{(2)}$ to 511	H	L	H	H
64	256	512	L	L	H	H

NUMBER OF WORDS IN FIFO				$\overline{\text { FF }}$	$\overline{\text { PAF }}$	$\overline{\mathrm{P}} \overline{\mathrm{A}} \overline{\mathrm{E}}$	$\overline{\mathrm{E}} \overline{\mathrm{F}}$
IDT72221	IDT72231	IDT72241	IDT72251				
0	0	0	0	H	H	L	L
1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	H	H	L	H
($\mathrm{n}+1$)to (1,024-(m+1))	$(\mathrm{n}+1)$ to $(2,048-(\mathrm{m}+1)$)	($\mathrm{n}+1$) to ($4,096-(\mathrm{m}+1)$)	$(\mathrm{n}+1)$ to (8,192-(m+1))	H	H	H	H
$(1,024-m)^{(2)}$ to 1,023	$(2,048-m)^{(2)}$ to 2,047	$(4,096-m)^{(2)}$ to 4,095	$(8,192-m)^{(2)}$ to 8,191	H	L	H	H
1,024	2,048	4,096	8,192	L	L	H	H

NOTES:

1. $\mathrm{n}=$ Empty Offset ($\mathrm{n}=7$ default value)
2. $m=$ Full Offset ($m=7$ default value)

NOTES:
 flag offset registers.
2. After reset, the outputs will be LOW if $\overline{\mathrm{OE}}=0$ and tri-state if $\overline{\mathrm{OE}}=1$.
3. The clocks (RCLK, WCLK) can be free-running during reset.

Figure 4. Reset Timing

NOTE:

1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge for $\overline{F F}$ to change during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskew1, then $\overline{F F}$ may not change state until the next WCLK edge.

Figure 5. Write Cycle Timing

WEN2

NOTE:

1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge for EF to change during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskewi, then $\overline{E F}$ may not change state until the next RCLK edge.

Figure 6. Read Cycle Timing

Figure 7. First Data Word Latency Timing

NOTE:

1. Only one of the two write enable inputs, $\overline{\mathrm{WEN} 1}$ or WEN2, needs to go inactive to inhibit writes to the FIFO.

Figure 8. Full Flag Timing

NOTE:

1. When tskew $1 \geq$ minimum specification, treRL maximum $=$ tcLk + tSKEW 1
tSKEW1 < minimum specification, trRL maximum $=2$ tcLK + tSKEW1 or tcLK + tSKEW1
The Latency Timings apply only at the Empty Boundary ($\overline{\mathrm{EF}}=\mathrm{LOW}$).
Figure 9. Empty Flag Timing

NOTES:

1. $m=\overline{\mathrm{PAF}}$ offset
2. $64-\mathrm{m}$ words in FIFO for IDT72421, 256 -m words for IDT72201, 512-m words for IDT72211, 1,024-m words for IDT72221, 2,048-m words for IDT72231, 4,096-m words for IDT72241, and 8,192-m words for IDT72251.
3. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge for $\overline{\mathrm{PAF}}$ to change during that clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskewz, then PAF may not change state until the next WCLK rising edge.
4. If a write is performed on this rising edge of the Write Clock, there will be Full - (m-1) words in the FIFO when $\overline{\text { PAF goes LOW. }}$

Figure 10. Programmable Full Flag Timing

NOTES:

1. $n=\overline{\text { PAE }}$ offset.
2. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge for $\overline{\text { PAE }}$ to change during that clock cycle. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskew2, then PAE may not change state until the next RCLK rising edge.
3. If a read is performed on this rising edge of the Read Clock, there will be Empty $+(n-1)$ words in the FIFO when PAE goes LOW.

Figure 11. Programmable Empty Flag Timing

Figure 12. Write Offset Registers Timing

Figure 13. Read Offset Registers Timing

OPERATING CONFIGURATIONS

SINGLE DEVICE CONFIGURATION

Asingle IDT72421/72201/72211/72221/72231/72241/72251 may beused when the application requirements are for 64/256/512/1,024/2,048/4,096/ 8,192 words or less. When these FIFOs are in a Single Device Configuration, the Read Enable 2 ($\overline{\text { REN2 }}$) control input can be grounded (see Figure 14). In this configuration, the WriteEnable 2/Load (WEN2/LD) pinissetLOW at Reset so that the pin operates as a control to load and read the programmable flag offsets.

WIDTH EXPANSION CONFIGURATION

Word width may be increased simply by connecting the corresponding input controls signals of multiple devices. Acompositeflag should be created for each of the endpoint status flags ($\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$). The partial status flags ($\overline{\mathrm{AE}}$ and $\overline{\mathrm{AF}}$) can be detected from any one device. Figure 15 demonstrates a 18-bit word width by using two IDT72421/72201/72211/72221/72231/72241/72251s. Any word width can be attained by adding additional IDT72421/72201/72211/ 72221/72231/72241/72251s.

When these FIFOs are in a Width Expansion Configuration, the Read Enable 2 ($\overline{\mathrm{REN} 2}$) control input can be grounded (see Figure 15). In this
configuration, the Write Enable 2/Load(WEN2/(̄) pinis setLOW atResetso thatthe pin operates as acontrol toload and readthe programmableflag offsets.

DEPTH EXPANSION - The IDT72421/72201/72211/72221/72231/72241/ 72251 can be adapted to applications when the requirements are for greater than 64/256/512/1,024/2,048/4,096/8,192 words. The existence of two enable pins on the read and write port allow depth expansion. The Write Enable 2/Load pin is used as a second write enable in a depth expansion configurationthusthe Programmableflags are settothedefaultvalues. Depth expansion is possible by using one enable input for system control while the other enable inputis controlled by expansion logic to direct the flow of data. A typical application would have the expansion logic alternate data access from one device to the next in a sequential manner. These devices operate in the Depth Expansion configuration when the following conditions are met:

1. The WEN2/ $\overline{\mathrm{LD}}$ pin is held HIGH during Reset so that this pin operates a secondWrite Enable.
2. External logic is used to control the flow of data.

Please see the Application Note "DEPTH EXPANSION OF IDT'S SYNCHRONOUS FIFOs USING THERING COUNTERAPPROACH" for details ofthisconfiguration.

Figure 14. Block Diagram of Single $64 \times 9,256 \times 9,512 \times 9,1,024 \times 9,2,048 \times 9,4,096 \times 9,8,192 \times 9$ Synchronous FIFO

Figure 15. Block Diagram of $64 \times 18,256 \times 18,512 \times 18,1,024 \times 18,2,048 \times 18,4,096 \times 18,8,192 \times 18$
Synchronous FIFO Used in a Width Expansion Configuration

ORDERING INFORMATION

NOTES:

1. Industrial temperature range product for the 15 ns and 25 ns speed grades are available as standard product.
2. Green parts are available. For specific speeds and packages contact your sales office.

LEAD FINISH (SNPB) PARTS ARE IN EOL PROCESS. PRODUCT DISCONTINUATION NOTICE - PDN\# SP-17-02

DATASHEET DOCUMENT HISTORY

10/03/2000 pgs. 2, 3, 4 and 14.
05/01/2001 pgs. 1, 2, 3, 4 and 14 .
02/08/2006
10/22/2008
08/08/2013
12/11/2017
pgs. 1 and 14 .
pg. 14.
pgs. 1, 3, 13 and 14 .

Product Discontinuation Notice-PDN\#SP-17-02
Last time buy expires June 15, 2018.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for FIFO category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
CY7C425-25LMB CY7C454-14LMB IDT7202LA50J CY7C464A-10JI 5962-8866903YA 5962-8866905XA 5962-8986302YA 59629071503MXA 5962-9961502QYA 5962-9158505MXA 5962-8986305ZA 5962-8986305UA 5962-8986303XA 5962-8986302ZA 596289523052A 5962-8866904XA 72241L10JG CY7C433-10AXC 5962-8986306YA SN74V293PZAEP CY7C429-20JC CY7C433-15JC 7200L25JI 7202LA12TPG 7204L25SO 72125L25SOG 72V04L35J IDT72231L25PF 72265LA10PFG 72V293L7-5PFGI 72V241L10PF CY7C429-10PC 7203L50P 72T1845L5BB SN74ACT7806-20DL SN74ACT2229DW SN74ACT7804-20DL SN74ACT7814-20DL SN74ALVC7804-40DL CY7C4225V-15ASC SN74V245-10PAG 72210L10TPG 72V03L15JG CY7C425-20JXCT CY7C425-20JXC 7282L12PAG SN74ACT7802-25FN SN74V215-7PAG SN74V235-7PAG SN74V293-10PZA

