(I)IDT

LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018

FEATURES:

- The IDT7280 is equivalent to two IDT7200 256×9 FIFOs
- The IDT7281 is equivalent to two IDT7201512 $\times 9$ FIFOs
- The IDT7282 is equivalent to two IDT7202 1,024 9 FIFOs
- The IDT7283 is equivalent to two IDT7203 2,048 x 9 FIFOs
- The IDT7284 is equivalent to two IDT7204 4,096 x 9 FIFOs
- The IDT7285 is equivalent to two IDT7205 8,192 $\times 9$ FIFOs
- Low power consumption
- Active: 685 mW (max.)
- Power-down: 83 mW (max.)
- Ultra high speed-12 ns access time
- Asynchronous and simultaneous read and write
- Offers optimal combination of data capacity, small foot print and functional flexibility
- Ideal for bi-directional, width expansion, depth expansion, bus-matching, and data sorting applications
- Status Flags: Empty, Half-Full, Full
- Auto-retransmit capability
- High-performance CMOS technology
- Space-saving TSSOP
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available

DESCRIPTION:

The IDT7280/7281/7282/7283/7284/7285 are dual-FIFO memories that load and empty data on a first-in/first-out basis. These devices are functional and compatible to two IDT7200/7201/7202/7203/7204/7205FIFOs in asingle package with all associated control, data, and flag lines assigned to separate pins. The devices use Full and Empty flags to prevent data overflow and underflowand expansionlogic to allowfor unlimited expansioncapability in both word size and depth.

The reads and writes are internally sequential throughthe use of ring pointers, with no address information required to load and unload data. Data is toggled in and out of the devices through the use of the Write (\bar{W}) and Read (\bar{R}) pins.

The devices utilize a 9-bitwide data array to allow for control and parity bits at the user's option. This feature is especially useful in data communications applications where it is necessary to use a parity bitfor transmission/reception errorchecking. Italsofeatures a Retransmit($\overline{\mathrm{RT})}$ capability thatallowsfor reset of the read pointer to its initial position when $\overline{\mathrm{RT}}$ is pulsed LOW to allow for retransmission from the beginning of data. A Half-Full Flag is available in the single device mode and width expansion modes.
These FIFOs are fabricated using high-speed CMOS technology. They are designed for those applications requiring asynchronous and simultaneous read/writes in multiprocessing and rate buffer applications.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'I \& Ind'l	Unit
VTERM	Terminal Voltagewith Respect to GND	-0.5 to +7.0	V
TstG	Storage Temperature	$-55 \mathrm{to}+125$	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	$-50 \mathrm{to}+50$	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\mathrm{IH}} \mathrm{H}^{(1)}$	InputHighVoltage	2.0	-	-	V
$\mathrm{VIL}^{(2)}$	InputLowVoltage	-	-	0.8	V
TA	OperatingTemperature Commercial	0	-	70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$
NOTES:					

NOTES:

1. For $\overline{\mathrm{RT}} / \overline{\mathrm{RS}} / \overline{\mathrm{XI}}$ input, $\mathrm{V}_{\mathrm{IH}}=2.6 \mathrm{~V}$ (commercial).
2. 1.5 V undershoots are allowed for 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	IDT7280LIDT7281LIDT7282LCommercial \& Industrial ${ }^{(1)}$tA $_{\mathrm{A}}=12,15 \mathrm{~ns}$		IDT7283LIDT7284LIDT7285ILCommercial \& Industrial ${ }^{(1)}$$\mathrm{tA}_{\mathrm{A}}=12,15 \mathrm{~ns}$		Unit
		Min.	Max.	Min.	Max.	
$\underline{\mathrm{LL}}{ }^{(2)}$	InputLeakage Current(Any Input)	-1	1	-1	-	$\mu \mathrm{A}$
ILO ${ }^{(3)}$	OutputLeakage Current	-10	10	-10	10	$\mu \mathrm{A}$
VOH	OutputLogic "1"Voltage \quad IOH $=-2 \mathrm{~mA}$	2.4	-	2.4	-	V
Vol	Output Logic "0" Voltage IoL $=8 \mathrm{~mA}$	-	0.4	-	0.4	V
ICC1 ${ }^{(4,5)}$	Active Power Supply Current (both FIFOs)	-	$125^{(6)}$	-	150	mA
ICC2 ${ }^{(4,7)}$	Standby Current ($\overline{\mathrm{R}}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}=\mathrm{V} / \mathrm{H})$	-	15	-	15	mA

NOTES:

1. Industrial temperature range product for the 15 ns speed grade is available as a standard device.
2. Measurements with $0.4 \leq \mathrm{VIN} \leq \mathrm{Vcc}$.
3. $\mathrm{R} \geq \mathrm{V} \mathrm{H}, 0.4 \leq$ Vout $\leq \mathrm{Vcc}$.
4. Tested with outputs open (lout $=0$).
5. Tested at $\mathrm{f}=20 \mathrm{MHz}$.
6. Typical $\mathrm{IcC1}=2^{*}\left[15+2^{*} \mathrm{fs}+0.02^{*} \mathrm{C} L^{*} \mathrm{fs}\right]$ (in mA) with $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$, fs $=$ WCLK frequency $=$ RCLK frequency (in MHz, using TTL levels), data switching at $\mathrm{fs} / 2$, $\mathrm{CL}=$ capacitive load (in pF).
7. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{GND}+0.2 \mathrm{~V}$.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Condition	Max.	Unit
CIN	InputCapacitance	VIN $=0 \mathrm{~V}$	8	pF
Cout	OutputCapacitance	VOUT $=0 \mathrm{~V}$	8	pF

NOTE:

1. Characterized values, not currently tested.

AC TEST CONDITIONS

InputPulse Levels	GND to 3.0V
InputRise/Fall Times	5 ns
Input Timing ReferenceLevels	1.5 V
OutputReferenceLevels	1.5 V
OutputLoad	See Figure1

Figure 1. Output Load

* Includes scope and jig capacitances.

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$

(Commercial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Commercial		Commercial \& Industrial ${ }^{(2)}$		
		IDT7280L12 IDT7281L12 IDT7282L12 IDT7283L12 IDT7284L12 IDT7285L12		IDT7280L15 IDT7281L15 IDT7282L15 IDT7283L15 IDT7284L15 IDT7285L15		
		Min.	Max.	Min.	Max.	Unit
ts	ShiftFrequency	-	50	-	40	MHz
tre	Read Cycle Time	20	-	25	-	ns
tA	Access Time	-	12	-	15	ns
TRR	Read Recovery Time	8	-	10	-	ns
tRPW	ReadPulseWidth ${ }^{(3)}$	12	-	15	-	ns
tRLZ	Read Pulse Low to Data Bus at Low ${ }^{(4)}$	3	-	3	-	ns
twLz	Write Pulse Highto Data Bus at Low ${ }^{(4,5)}$	5	-	5	-	ns
DV	Data Valid from Read Pulse High	5	-	5	-	ns
tRHZ	Read Pulse High to Data Bus at High ${ }^{(4)}$	-	12	-	15	ns
twc	Write Cycle Time	20	-	25	-	ns
twPW	WritePulseWidth ${ }^{(3)}$	12	-	15	-	ns
tWR	Write Recovery Time	8	-	10	-	ns
DS	DataSet-upTime	9	-	11	-	ns
©H	DataHold Time	0	-	0	-	ns
セRSC	Reset Cycle Time	20	-	25	-	ns
trS	ResetPulseWidth ${ }^{(3)}$	12	-	15	-	ns
tRSS	ResetSet-upTime ${ }^{(4)}$	12	-	15	-	ns
セRSR	ResetRecovery Time	8	-	10	-	ns
tRTC	RetransmitCycle Time	20	-	25	-	ns
trT	RetransmitPulseWidth ${ }^{(3)}$	12	-	15	-	ns
tRTS	RetransmitSet-up Time ${ }^{(4)}$	12	-	15	-	ns
tRTR	RetransmitRecovery Time	8	-	10	-	ns
tefl	Resetto Empty Flag Low	-	12	-	25	ns
tHFH,FFH	Resetto Half-Full and Full Flag High	-	17	-	25	ns
tRTF	RetransmitLowto Flags Valid	-	20	-	25	ns
tREF	Read Low to Empty Flag Low	-	12	-	15	ns
tRFF	Read High to Full Flag High	-	14	-	15	ns
tRPE	Read Pulse Width after EFFigh	12	-	15	-	ns
twer	Write High to Empty Flag High	-	12	-	15	ns
twFF	Write Low to Full Flag Low	-	14	-	15	ns
tWHF	Write Low to Half-Full Flag Low	-	17	-	25	ns
TRHF	Read Highto Half-Full Flag High	-	17	-	25	ns
twp	Write Pulse Width after $\overline{\text { FF }}$ High	12	-	15	-	ns
txOL	Read/Write to $\overline{\mathrm{XO}}$ Low	-	12	-	15	ns
txoh	Read/Writeto $\overline{\mathrm{XO}} \mathrm{High}$	-	12	-	15	ns
tx1	$\overline{\mathrm{X}}$ PulseWidth ${ }^{(3)}$	12	-	15	-	ns
tXIR	$\overline{\mathrm{XI}}$ Recovery Time	8	-	10	-	ns
txis	$\overline{\text { XI }}$ Set-up Time	8	-	10	-	ns

NOTES:

1. Timings referenced as in AC Test Conditions.
2. Industrial temperature range product for the 15 ns speed grade is available as a standard device.
3. Pulse widths less than minimum value are not allowed
4. Values guaranteed by design, not currently tested.
5. Only applies to read data flow-through mode.

SIGNAL DESCRIPTIONS

INPUTS:

DATA IN (D0 - D8)

Data inputs for 9-bit wide data.

CONTROLS:

RESET ($\overline{\mathrm{RS}}$)

Resetis accomplishedwhenevertheReset($\overline{\mathrm{RS}})$ inputistakentoaLOW state. During reset, both internal read and write pointers are set to the firstlocation. A reset is required after power up before a write operation cantake place. Both the Read Enable (\bar{R}) and Write Enable (\bar{W}) inputs must be in the HIGH state during the window shown in Figure 2, (i.e., tRss before the rising edge of $\overline{\mathrm{RS}}$) and should not change until tRSR after the rising edge of $\overline{\mathrm{RS}}$. Half-Full Flag ($\overline{\mathrm{HF}}$) will be reset to HIGH after Reset ($\overline{\mathrm{RS}}$).

WRITE ENABLE ($\overline{\mathrm{W}}$)

A write cycle is initiated on the falling edge of this input ifthe Full Flag ($\overline{\mathrm{FF}}$) is notset. Dataset-up and hold timesmustbe adheredtowith respecttotherising edge of the Write Enable (\bar{W}). Datais stored inthe RAM array sequentially and independently of any on-going read operation.

After half of the memory is filled and at the falling edge of the next write operation, the Half-Full Flag($\overline{\mathrm{HF}}$) will be setto LOW and will remain set until the difference between the write pointer and read pointer is less than or equal to one half of the total memory of the device. The Half-Full Flag $(\overline{\mathrm{HF}})$ is then reset by the rising edge of the read operation.

To prevent data overflow, the Full Flag ($\overline{\mathrm{FF}}$) will go LOW, inhibiting further write operations. Upon the completion of a valid read operation, the Full Flag $(\overline{\mathrm{FF}})$ will go HIGH after tRFF, allowing a valid write to begin. When the FIFO is full, the internal write pointer is blocked from \bar{W}, so external changes in \bar{W} will notaffect the FIFO when it is full.

READ ENABLE ($\overline{\mathrm{R}}$)

A read cycle is initiated on the falling edge of the Read Enable $(\overline{\mathrm{R}})$ provided the Empty Flag ($\overline{\mathrm{EF}}$) is notset. The data is accessed on aFirst-In/First-Outbasis, independent of any ongoing write operations. After Read Enable (\bar{R}) goes HIGH, the Data Outputs (Q0-Q8) will return to a high impedance condition until the next Read operation. When all data has been read from the FIFO, the Empty Flag ($\overline{\mathrm{EF}}$) will go LOW, allowing the "final" read cycle but inhibiting further read operations with the data outputs remaining in a high impedance state. Once a valid write operation has been accomplished, the Empty Flag (馬) will go HIGH after twEF and a valid Read can then begin. Whenthe FIFO is empty, the internal read pointer is blocked from \bar{R} so external changes in $\overline{\mathrm{R}}$ will not affect the FIFO when it is empty.

FIRST LOAD/RETRANSMIT (FL/RT)

This is a dual-purpose input. In the Depth Expansion Mode, this pin is groundedtoindicatethatitisthefirstloaded(seeOperating Modes). IntheSingle

Device Mode, this pin acts as the retransmitinput. The Single Device Mode is initiated by grounding the Expansion $\ln (\overline{\mathrm{XI}})$.

These devices canbemadeto retransmitdatawhenthe RetransmitEnable control $(\overline{\mathrm{RT}})$ inputis pulsed LOW. A retransmitoperation will setthe internal read pointer to the firstlocation and will not affect the write pointer. Read Enable ($\overline{\mathrm{R}})$ and Write Enable $(\overline{\mathrm{W}})$ must be inthe HIGH state during retransmit. This feature is useful when less than 256/512/1,024/2,048/4,096/8,192 writes are performed between resets. The retransmitfeature is not compatible with the Depth Expansion Mode and will affect the Half-Full Flag ($\overline{\mathrm{HF}})$, depending on the relative locations of the read and write pointers.

EXPANSION IN (XI)

This inputis adual-purpose pin. Expansion $\ln (\overline{\mathrm{XI}})$ is grounded to indicate an operation in the single device mode. Expansion In $(\overline{\mathrm{II}})$ is connected to Expansion Out ($\overline{\mathrm{XO}) \text { of the previous device in the Depth Expansion or Daisy }}$ Chain Mode.

OUTPUTS:

FULL FLAG (FF)

The Full Flag ($\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operation, when the write pointer is one location less than the read pointer, indicating that the device is full. Ifthe read pointer is notmoved after Reset $(\overline{\mathrm{RS}})$, the Full-Flag $(\overline{\mathrm{FF}})$ will go LOW after 256 writes for IDT7280, 512 writes for the IDT7281, 1,024 writes for the IDT7282, 2,048 writes for the IDT7283, 4,096 writes for the IDT7284 and 8,192 writes for the IDT7285.

EMPTY FLAG ($\overline{\mathrm{EF}}$)

The Empty Flag $(\overline{\mathrm{EF}})$ will go LOW, inhibiting further read operations, when the read pointer is equal to the write pointer, indicating that the device is empty.

EXPANSION OUT/HALF-FULL FLAG ($\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$)

This is a dual-purpose output. In the single device mode, when Expansion $\ln (\overline{\mathrm{XI}})$ is grounded, this output acts as an indication of a half-full memory.

After half of the memory is filled and at the falling edge of the next write operation, the Half-Full Flag $(\overline{\mathrm{HF}})$ will be set LOW and will remain set until the difference between the write pointer and read pointer is less than or equal to one halfofthe totalmemory of the device. The Half-Full Flag $(\overline{\mathrm{HF}})$ is then reset by using rising edge of the read operation.

In the Depth Expansion Mode, Expansion $\operatorname{In}(\overline{\mathrm{XI}})$ is connectedto Expansion Out $(\overline{\mathrm{XO}})$ of the previous device. This outputacts as asignal to the next device in the Daisy Chain by providing a pulse to the next device when the previous device reaches the lastlocation of memory.

DATA OUTPUTS (Q0 - Q8)

Data outputs for 9-bit wide data. This data is in a high impedance condition whenever Read (\bar{R}) is in a HIGH state.

NOTES:

1. $\overline{\mathrm{EF}}, \overline{\mathrm{FF}}, \overline{\mathrm{HF}}$ may change status during Reset, but flags will be valid at tRSC
2. \bar{W} and $\overline{\mathrm{R}}=\mathrm{V}_{\mathrm{H}}$ around the rising edge of $\overline{\mathrm{RS}}$.

Figure 2. Reset

Figure 3. Asynchronous Write and Read Operation

Figure 4. Full Flag From Last Write to First Read

Figure 5. Empty Flag From Last Read to First Write

Figure 6. Retransmit

Figure 7. Minimum Timing for an Empty Flag Coincident Read Pulse

Figure 8. Minimum Timing for a Full Flag Coincident Write Pulse

Figure 9. Half-Full Flag Timing

Figure 10. Expansion Out

Figure 11. Expansion In

OPERATING MODES:

Care must be taken to assure that the appropriate flag is monitored by each system (i.e. $\overline{F F}$ is monitored onthedevicewhere \bar{W} is used; $\overline{\mathrm{EF}}$ ismonitored on the device where $\overline{\mathrm{R}}$ is used).

SINGLE DEVICE MODE

A single IDT7280/7281/7282/7283/7284/7285 may be used when the application requirements are for256/512/1,024/2,048/4,096/8,192 words or less. These FIFOs are in a Single Device Configuration whenthe Expansion $\ln (\overline{\mathrm{XI}})$ control input is grounded (see Figure 12).

DEPTH EXPANSION

These devices can easily be adapted to applications when the requirements are for greater than 256/512/1,024/2,048/4,096/8,192 words. Figure

14 demonstrates a four-FIFO Depth Expansion using two IDT7280/7281/ $7282 / 7283 / 7284 / 7285 s$ s. Any depth can be attained by adding additional IDT7280/7281/7282/7283/7284/7285s. These FIFOs operate in the Depth Expansion mode whenthe following conditions are met:

1. The firstFIFO mustbedesignated by grounding the FirstLoad ($\overline{\mathrm{FL}}$) control input.
2. All other FIFOs must have $\overline{F L}$ in the HIGH state.
3. The Expansion Out $(\overline{\mathrm{XO}})$ pin of each device mustbetied tothe Expansion In $(\overline{\mathrm{XI}})$ pin of the next device. See Figure 14.
4. Externallogic is needed to generate acompositeFull Flag($\overline{\mathrm{FF}})$ and Empty Flag ($\overline{\mathrm{EF}}$). This requires the ORing of all $\overline{\mathrm{EF}}$ s and ORing of all $\overline{\mathrm{FF}}$ (i.e. all mustbe setto generate the correct composite $\overline{\mathrm{FF}}$ or $\overline{\mathrm{EF}}$). See Figure 14.
5. The Retransmit $(\overline{\mathrm{RT}})$ function and Half-Full Flag $(\overline{\mathrm{HF}})$ are not available in the Depth Expansion Mode.

USAGE MODES:

WIDTH EXPANSION

Word width may be increased simply by connecting the corresponding input control signals of multiple FIFOs. Statusflags ($\overline{\mathrm{EF}}, \overline{\mathrm{FF}}$ and $\overline{\mathrm{FF}}$) can be detected from any one FIFO. Figure 13 demonstrates an 18-bitword width by using the two FIFOs contained inthe IDT7280/7281/7282/7283/7284/7285s. Any word width can be attained by adding FIFOs (Figure 13).

BIDIRECTIONAL OPERATION

Applications which require data buffering between two systems (each system capable of Read and Write operations) can be achieved by pairing IDT7280/7281/7282/7283/7384/7285s as shown in Figure 16. Both Depth Expansion and Width Expansion may be used in this mode.

DATAFLOW-THROUGH

Two types of flow-through modes are permitted, a read flow-through and write flow-through mode. For the read flow-through mode (Figure 17),
the FIFO permits a reading of a single word after writing one word of data into an empty FIFO. The data is enabled on the bus in (twEF + ta) ns after the rising edge of \bar{W}, called the firstwrite edge, and it remains on the bus until the \bar{R} line is raised from LOW-to-HIGH, after which the bus would go into a three-state mode after tRHz ns. The $\overline{E F}$ line would have a pulse showing temporary deassertion and then would be asserted.

In the write flow-through mode (Figure 18), the FIFO permits the writing of a single word of data immediately after reading one word of data from a full FIFO. The \bar{R} line causes the $\overline{F F}$ to be deasserted but the \bar{W} line being LOW causes itto be asserted again in anticipation of a new data word. On the rising edge of \bar{W}, the newword isloaded in the FIFO. The \bar{W} line mustbe toggledwhen FFis notassertedto writenewdataintheFIFO and toincrementthewrite pointer.

COMPOUND EXPANSION

The two expansion techniques described above can be applied together in a straightforward manner to achieve large FIFO arrays (see Figure 15).

Figure 12. Block Diagram of One $256 \times 9,512 \times 9,1,024 \times 9,2,048 \times 9,4,096 \times 9,8,192 \times 9$ FIFO Used in Single Device Mode

Figure 13. Block Diagram of $256 \times 18,512 \times 18,1,024 \times 18,2,048 \times 18,4,096 \times 18,8,192 \times 18$ FIFO Memory Used in Width Expansion Mode

TABLE 1 - RESET AND RETRANSMIT

Single Device Configuration/Width Expansion Mode

Mode	Inputs			Internal Status		Outputs		
	$\overline{\mathrm{R}} \bar{S}$	$\overline{\mathrm{RT}}$	$\overline{\mathrm{X}}$	Read Pointer	Write Pointer	$\overline{\mathrm{E}} \overline{\mathrm{F}}$	$\overline{F F}$	$\overline{\mathrm{HF}}$
Reset	0	X	0	LocationZero	LocationZero	0	1	1
Retransmit	1	0	0	LocationZero	Unchanged	X	X	X
Read/Write	1	1	0	Increment ${ }^{(1)}$	Increment ${ }^{(1)}$	X	X	X

NOTE:

1. Pointer will increment if flag is High.

TABLE 2 - RESET AND FIRST LOAD TRUTH TABLE
Depth Expansion/Compound Expansion Mode

Mode	Inputs			Internal Status		Outputs	
	$\overline{\mathrm{R}} \overline{\mathbf{S}}$	$\overline{\mathrm{FL}}$	$\overline{\mathbf{X}} \overline{\mathrm{I}}$	Read Pointer	Write Pointer	$\overline{\mathrm{E}} \overline{\mathrm{F}}$	$\overline{\mathrm{FF}}$
ResetFirstDevice	0	0	(1)	LocationZero	LocationZero	0	1
Reset All Other Devices	0	1	(1)	LocationZero	LocationZero	0	1
Read/Write	1	X	(1)	X	X	X	X

NOTE:

1. $\overline{\mathrm{XI}}$ is connected to $\overline{\mathrm{XO}}$ of previous device. See Figure 14. $\overline{\mathrm{RS}}=$ Reset Input, $\overline{\mathrm{FL}} / \overline{\mathrm{RT}}=$ First Load/Retransmit, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{FF}}=\mathrm{Full}$ Flag Output, $\overline{\mathrm{XI}}=$ Expansion Input, $\overline{\mathrm{HF}}=$ Half-Full Flag Output

Figure 14. Block Diagram of $1,024 \times 9,2,048 \times 9,4,096 \times 9,8,192 \times 9,16,384 \times 9,32,768 \times 9$ FIFO Memory (Depth Expansion)

NOTES:

1. For depth expansion block see section on Depth Expansion and Figure 14.
2. For Flag detection see section on Width Expansion and Figure 13.

Figure 15. Compound FIFO Expansion

Figure 16. Bidirectional FIFO Mode

Figure 17. Read Data Flow-Through Mode

Figure 18. Write Data Flow-Through Mode

ORDERING INFORMATION

Tube or Tray
Tape and Reel

$$
\text { Commercial }\left(0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

$$
\text { Industrial }\left(-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Green
Thin Shrink SOIC (TSSOP, SO56-2)
Commercial Only Commercial and Industrial

Access Time (ta) Speed in Nanoseconds

Low Power
7280256×9 - CMOS Dual Asynchronous FIFO 512×9 - CMOS Dual Asynchronous FIFO $1,024 \times 9$ - CMOS Dual Asynchronous FIFO 2,048 x 9 - CMOS Dual Asynchronous FIFO $4,096 \times 9$ - CMOS Dual Asynchronous FIFO $8,192 \times 9$ - CMOS Dual Asynchronous FIFO

3208 drw 21

NOTES:

1. Industrial temperature range product for the 15 ns speed grade is available as a standard device.
2. Green parts are available. For specific speeds and packages contact your local sales office. LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN\# SP-17-02

DATASHEET DOCUMENT HISTORY

pgs. 2, 3 and 12 .
pg. 12.
pgs. 1 and 12.
Product Discontinuation Notice-PDN\# SP-17-02
Last time buy expires June 15, 2018.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for FIFO category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
CY7C425-25LMB CY7C454-14LMB IDT7202LA50J 72V201L10PFG 72V201L15PFGI 72225LB10JG 72241L10JG 723622L15PFG 7204L12JG8 7206L25TPGI 72V3612L12PFG 7201LA12PDG 7283L12PAG 72251L10JG 72240L10TPG SN74V293PZAEP CY7C43315JC CY7C425-20JXC CY7C429-15JXC 5962-8952305EA 7201LA20LB 7206L50TP 72V36110L6PF 7200L12TPG 7202LA12PDG 7204L12SOG 7204L15SOGI 7204L15TPGI 7204L30LB 7207L15JG 72125L25SOG 72221L15JGI 7285L15PAGI 72V04L15JG 72V04L25JGI 72V04L35J 72V3642L10PFG 72V283L7-5BC 72V253L6BCG 72V283L7-5PFGI 72245LB10JG 5962-8986305YA 59628966606XA 7202LA25JGI 723623L12PFG 7203L50P 7206L15TPG 7205L15TPGI 72V265LA10TFG 72235LB10PFG

