FEATURES:

- 256×256 channel non-blocking switch
- Serial Telecom Bus Compatible (ST-BUS ${ }^{\circledR}$)
- 8 RX inputs- 32 channels at $64 \mathrm{Kbit} / \mathrm{s}$ per serial line
- 8 TX output- 32 channels at $64 \mathrm{Kbit} / \mathrm{s}$ per serial line
- Three-state serial outputs
- Microprocessor Interface (8-bit data bus)
- 5V Power Supply
- Available in 44-pin Plastic Leaded Chip Carrier (PLCC)
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION:

The IDT728980 is a ST-BUS ${ }^{\circledR}$ compatible digital switch controlled by a microprocessor. The IDT728980 can handle as many as 256,64 Kbit/s input
and output channels. Those 256 channels are divided into 8 serial inputs and outputs, each of which consists of 32 channels ($64 \mathrm{Kbit} /$ s per channel) to form a multiplexed $2.048 \mathrm{Mb} / \mathrm{s}$ stream.

FUNCTION AL DESCRIPTION

Afunctional block diagram oftheIDT728980 device isshown onbelow. The serial ST-BUS ${ }^{\circledR}$ streams operate continuously at $2.048 \mathrm{Mb} /$ s and are arranged in 125μ swide frames each containing 32,8 -bitchannels. Eightinput(RX0-7) and eightoutput(TX0-7) serial streams are provided in the IDT728980 device allowing a complete 256×256 channel non-blocking switch matrix to be constructed. The serial interface clock ($\overline{\mathrm{C} 4 i}$) for the device is 4.096 MHz .

The received serial datais internally converted to a parallel formatby the on chip serial-to-parallel converters and stored sequentially ina256-position Data Memory. By using aninternal counterthatis resetby the input8KHz frame pulse, $\overline{F 0 i}$, the incoming serial datastreams canbeframed and sequentially addressed.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

NOTE:

1. DNC - Do Not Connect.

PLCC: 0.05in. pitch, 0.65in. x 0.65in.
(J44, order code: J)
TOP VIEW

PIN DESCRIPTIONS

SYMBOL	NAME	1/0	DESCRIPTION
GND	Ground.		Ground Rail.
VCC	VCC		+5.0 Volt Power Supply.
$\overline{\text { DTA }}$	Data Acknowledgment (Open Drain)	0	This active LOW output indicates that a data bus transfer is complete. A pull-up resistor is required at this output.
RX0-7	RX Input 0 to 7	1	Serial data input streams. These streams have 32 channels at data rates of $2.048 \mathrm{Mb} / \mathrm{s}$.
F0i	Frame Pulse	1	This input identifies frame synchronization signals formatted to ST-BUS ${ }^{\circledR}$ specifications.
$\overline{\mathrm{C} 4} \mathrm{i}$	Clock	1	4.096 MHz serial clock for shifting data in and out of the data streams.
A0-A5	Address 0 to 5	1	These lines provide the address to IDT728980 internal registers.
DS	Data Strobe	1	This is the input for the active HIGH data strobe on the microprocessor interface. This input operates with $\overline{\mathrm{CS}}$ to enable the internal read and write generation.
R/VW	Read/Write	1	This input controls the direction of the data bus lines (D0-D7) during a microprocessor access.
$\overline{\mathrm{CS}}$	Chip Select	1	Active LOW input enabling a microprocessor read or write of control register or internal memories.
D0-D7	Data Bus 0 to 7	I/O	These pins provide microprocessor access to data in the internal control register. Connection Memory HIGH, Connection Memory LOW and data memory.
TX0-7	TX Outputs 0 to 7 (Three-state Outputs)	0	Serial data output streams. These streams are composed of $32,64 \mathrm{Kbit/s}$ channels at data rates of $2.048 \mathrm{Mb} / \mathrm{s}$.
ODE	Output Drive Enable	।	This is an output enable for the TX0-7 serial outputs. If this input is LOW, TXO-7 are high-impedance. If this is HIGH, each channel may still be put into high-impedance by software control.
CCO	Control Channel Output	0	This output is a $2.048 \mathrm{Mb} / \mathrm{s}$ line which contains 256 bits per frame. The level of each bit is controlled by the contents of the CCO bit in the Connection Memory HIGH locations.

FUNCTIONAL DESCRIPTION (Cont'd)

Datato be output on the serial streams may come from two sources: Data Memory or Connection Memory. The Connection Memory is 16 bits wide and is split into two 8-bit blocks-Connection Memory HIGH and Connection Memory LOW. Each location in Connection Memory is associated with a particularchannel intheoutputstream soasto provide aone-to-one correspondence between the two memories. Thiscorrespondence allowsfor perchannel control for each TX output stream. In Processor Mode, data output on the TX stream is taken from the Connect Memory Low and originates from the microprocessor (Figure 2). Where as in Connection Mode (Figure 1), data is read from Data Memory using the address in Connection Memory. Data destined for a particular channel on the serial output stream is read during the previous channel time slotto allowtime for memory access and internal parallel-to-serial conversion.

CONNECTION MODE

InConnection Mode, the addresses of inputsource for all outputchannels are stored in the ConnectMemory Low. The Connect Memory Low locations are mapped to corresponding 8-bit x 32 -channel output. The contents of the Data Memory at the selected address are then transferred to the parallel-toserial converters. By having the output channel to specify the input channel throughthe connectmemory, inputchannels canbebroadcasttoseveral output channels.

PROCESSOR MODE

In Processor Mode the CPU writes datato specific Connect Memory Low locationswhich are to be outputonthe TX streams. The contents oftheConnect Memory Low are transferred to the parallel-to-serial converter one channel before it is to be output and are transmitted each frame to the output until it is changed by the CPU.

CONTROL

TheConnectMemory High bits(Table 4) control the per-channel functions available inthe IDT728980. Outputchannels are selected into specific modes such as: Processor Mode or Connection mode and Output Drivers Enabled or in three-state condition. There is also one bitto control the state of the CCO outputpin.

OUTPUT DRIVE ENABLE (ODE)

The ODE pin is the master output control pin. Ifthe ODE input is held LOW all TDM outputs will be placed inhigh impedance regardless ConnectMemory High programming. However, ifODE is HIGH, the contents of ConnectMemory High control the output state on a per-channel basis.

DELAY THROUGH THE IDT728980

The transfer of information from the inputserial streams to the output serial streams results in adelaythroughthe device. The delay throughthe IDT728980

Figure 1. Connection Mode
device varies according to the combination of input and outputstreams and the movementwithinthe streamfrom channeltochannel. Datareceived onaninput stream mustfirst be stored in Data Memory before it is sentout.

As information enters the IDT728980 itmustfirstpass through an internal serial-to-parallel converter. Likewise, before data leaves the device, it must passthroughthe internal parallel-to-serial converter. This datapreparationhas an effect on the channel positioning in the frame immediately following the incoming frame-mainly, data cannot leave in the same time slot, or in the time slotimmediatelyfollowing. Therefore, informationthatisto be outputinthe same channel position as the information is input, relative to the frame pulse, will be output in the following frame. As well, information switched to the channel immediately following the input channel will not be output in the time slot immediately following, butinthenexttimeslotallocated totheoutputchannel, one framelater.

Whether information can be output during a following timeslot after the informationentered the IDT728980 depends on whichRX stream the channel information enters on and which TX stream the information leaves on. This is caused bytheorderinwhichinputstreaminformationis placedinto DataMemory and the order in which stream information is queued for output. Table 1 shows theallowableinput/outputstream combinationsfortheminimum2channeldelay.

SOFTWARE CONTROL

If the A5 address line input is LOW then the IDT728980 Internal Control Register is addressed. IfA5 inputline ishigh, then the remaining address input lines are used to selectthe 32 possiblechannels per inputor outputstream. The address input lines and the Stream Address bits (STA) of the Control register give the user the capability of selecting all positions of IDT728980 Data and Connection memories. The IDT728980 memory mapping is illustrated in Table 2 and Figure 3.

The data in the control register (Table 3) consists of Memory Select and Stream Address bits, SplitMemory and Processor Modebits. InSplit Memory mode (Bit 7 of the Control register) reads are from the Data Memory and writes are to the Connect Memory as specified by the Memory SelectBits (Bits 4 and 3 of the Control Register). The Memory Selectbits allowtheConnectMemory High or LOW or the Data Memory to be chosen, and the Stream Address bits define internal memory subsections corresponding to inputor output streams.

The Processor Enable bit (bit 6) places EVERY output channel on every outputstreaminProcessor Mode; i.e., the contents oftheConnectMemoryLOW (CML, see Table 5) are output on the TX output streams once every frame unlesstheODE inputpinis LOW. IfPEbitisHIGH, thenthe IDT728980 behaves asifbits 2 (Channel Source) and 0 (Output Enable) of every Connect Memory High (CMH) locations were set to HIGH, regardless of the actual value. IfPE is LOW, then bit 2 and 0 of each Connect Memory High location operates normally. In this case, if bit 2 of the CMH is HIGH, the associated TX output channel is in Processor Mode. Ifbit 2 of the CMH is LOW, thenthe contents of theCML define the source information(stream and channel) of the time slotthat is to be switched to a n output.

Figure 2. Processor Mode

Ifthe ODE inputpinisLOW, then all the serial outputs are high-impedance. IfODE is HIGH, thenbit0 (OutputEnable) oftheCMHlocationenables(ifHIGH) or disables (ifLOW) the outputstream and channel.

The contents of bit 1(CCO) of eachConnection Memory High Location (see Table 4) is output on CCO pin once every frame. The CCO pinis a $2.048 \mathrm{Mb} / \mathrm{s}$ output, which carries 256 bits. IfCCO bitis setHIGH, the corresponding bit on CCO output is transmitted HIGH. IfCCO is LOW, the corresponding bit on the CCO outputistransmitted inLOW. The contents ofthe 256 CCObits oftheCMH are transmitted sequentially on to the CCO outputpin and are synchronous to the TX streams. Toallow for delay in any external control circuitry the contents of the CCO bitis outputone channel before the corresponding channel on the TX streams. For example, the contents of CCO bitin position 0 (corresponding to TX0, CH 0) is transmitted synchronously withthe TX channel 31, bit 7. Bit1's of CMH for channel 1 of stream 0-7 are outputsynchronously with TX channel 0 bits 7-0.

INITIALIZATION OF THE IDT728980

On initialization or power up, the contents of the Connection Memory High can be in any state. This is a potentially hazardous condition when multiple TX outputs are tied together to form matrices. The ODE pin should be held low on power up to keep all outputs in the high impedance condition until the contents of the CMH are programmed.

During the microprocessor initialization routine, the microprocessor should programthe desired active paths throughthe matrices, and putall otherchannels into the high impedance state. Care should be takenthat no two connected TX outputs drive the bus simultaneously. With the CMH setup, the microprocessor controlling the matrices can bring the ODE signal high to relinquish high impedance state control to the Connection Memory High bits outputs.

Input	Output Stream
0	$1,2,3,4,5,6,7$
1	$3,4,5,6,7$
2	$5,6,7$
3	7
4	$1,2,3,4,5,6,7$
5	$3,4,5,6,7$
6	$5,6,7$
7	7

Table 1. Input Stream to Output Stream Combinations that can Provide the Minimum 2-Channel Delay

A5	A4	A3	A2	A1	A0	HEX ADDRESS	LOCATION
0	X	X	X	X	X	00-1F	Control Register ${ }^{(1)}$
1	0	0	0	0	0	20	Channel $0^{(2)}$
1	0	0	0	0	1	21	Channel $1^{(2)}$
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
1	1	1	1	1	1	3F	Channel $31{ }^{(2)}$

NOTES:

1. Writing to the Control Register is the only fast transaction.
2. Memory and stream are specified by the contents of the Control Register.

Table 2. Address Mapping

Figure 3. Address Mapping

Table 3. Control Register Configuration

No Corresponding Memory - These bits give 0s if read							Per Channel Control Bits		
		7	6	5	4	3	2	1	0
Bit	Name	Description							
2	CS (Channel Source)	When 1, the contents of the corresponding location in Connection Memory LOW are output on the location's channel and stream. When 0 , the contents of the corresponding location in Connection Memory LOW act as an address for the Data Memory and determine the source of the connection to the location's channel and stream.							
1	CCO (CCO Bit)	This bit is output on the CCO pin one channel early. The CCO bit for stream 0 is output first.							
0	OE (Output Enable)	If the ODE pin is HIGH and bit 6 of the Control Register is 0 , then this bit enables the output drive for the location's channel and stream. This allows individuals channels on individuals streams to be made high-impedance, allowing switching matrices to be constructed. A 1 enables the driver and a 0 disables it.							

Table 4. Connection Memory High Register

NOTE:

1. If bit 2 of the corresponding Connection HIGH location is 1 or bit 6 of the Control Register is 1 , then these entire 8 bits are output on the channel and stream associated with this location. Otherwise, the bits are used as indicated to define the source of the connection which is output on the channel and stream associated with this location.

ABSOLUTEMAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameter	Min.	Max.	Unit
	Vcc - GND	-0.3	7	V
Vi	Voltage on Digital Inputs	GND -0.3	$\mathrm{Vcc}+0.3$	V
Vo	Voltage on Digital Outputs	$\mathrm{GND}-0.3$	$\mathrm{Vcc}+0.3$	V
Io	CurrentatDigital Outputs		40	mA
Ts	StorageTemperature	-65	+150	${ }^{\circ} \mathrm{C}$
PD	Package Power Dissapation		2	W

NOTE:

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Vcc	Positive Supply	4.75	-	5.25	V
V I	InputVoltage	0	-	Vcc	V
Top	OperatingTemperature Commercial	-40	-	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min.	Typ. ${ }^{(1)}$	Max.	Units	Test Conditions
Icc	Supply Current	-	7	10	mA	OutputsUnloaded
VIH	InputHigh Voltage	2.0	-	-	V	
VIL	InputLow Voltage	-	-	0.8	V	
IIL	InputLeakage	-	-	5	$\mu \mathrm{A}$	Vi between GND and Vcc
Cl	InputCapacitance	-	8	-	pF	
Voh	OutputHigh Voltage	2.4	-	-	V	$\mathrm{IOH}=10 \mathrm{~mA}$
IoH	OutputHighCurrent	10	15	-	mA	Sourcing. $\mathrm{VOH}=2.4 \mathrm{~V}$
VoL	Output Low Voltage	-	-	0.4	V	$\mathrm{loL}=5 \mathrm{~mA}$
IoL	Output Low Current	5	10	-	mA	Sinking. Vol $=0.4 \mathrm{~V}$
Ioz	High ImpedanceLeakage	-	-	5	$\mu \mathrm{A}$	Vo between GND and Vcc
Co	OutputPinCapacitance	-	8	-	pF	

NOTE:

1. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

Figure 4. Output Load

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ - CLOCK TIMING

Symbol	Characteristics	Min.	Typ. ${ }^{(2)}$	Max.	Unit
tCLK	Clock Period ${ }^{(3)}$	220	244	300	ns
tch	Clock Width High	95	122	150	ns
tcL	Clock Width Low	110	122	150	ns
tctT	Clock TransitionTime	-	20	-	ns
tFPS	Frame Pulse Setup Time	20	-	200	ns
tFPH	Frame Pulse Hold Time	0.020	-	50	$\mu \mathrm{C}$
tFPW	FramePulseWidth	-	244	-	ns

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
3. Contents of Connection Memory are not lost if the clock stops, however, TX outputs go into the high impedance state.

Figure 5. Frame Alignment

Figure 6. Clock Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ ——SERIAL STREAM TIMING

Symbol	Characteristics	Min.	Typ. ${ }^{(2)}$	Max.	Unit	Test Conditions
tTAZ	TX0-7 Delay - Active to High Z	20	30	60	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tTZA	TX0-7 Delay - High Z to Active	25	45	70	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tTAA	TX0-7 Delay - Active to Active	30	45	70	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
troh	TX0-7 Hold Time	25	45	-	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
toED	Output Driver Enable Delay	-	40	70	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
t×CH	External Control Hold Time	0	10	-	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
t×CD	External Control Delay	-	20	40	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tSIS	Serial InputSetup Time	-	-40	-20	ns	
tsIH	Serial Input Hold Time	90	-	-	ns	

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
3. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 7. Serial Outputs and External Control

Figure 8. Output Driver Enable

Figure 9. Serial Inputs

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ - PROCESSOR BUS

Symbol	Characteristics	Min.	Typ. ${ }^{(2)}$	Max.	Unit	Test Conditions
tcss	Chip Select Setup Time	10	0	-	ns	
tRWs	Read/Write Setup Time	10	-	-	ns	
tads	Address Setup Time	10	-	-	ns	
takD	AcknowledgmentDelay Fast	-	30	60	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tAKD	Acknowledgment Delay Slow	2.7	-	7.2	cycles	$\overline{\text { C4i }}$ cycles ${ }^{(4)}$
trws	FastWrite Data Setup Time	20	-	-	ns	
tSWD	Slow Write Data Delay	-	2.0	1.7	cycles	$\overline{\text { C4i cycles }}$
tRDS	Read DataSetup Time	-	-	0.5	cycles	$\overline{\mathrm{C} 4 i}$ cycles, $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tDHT	Data Hold Time Read	20	-	-	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tDHT	Data Hold Time Write	20	10	-	ns	
trDz	Read Data to High Impedance	-	30	60	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tCSH	Chip Select Hold Time	0	-	-	ns	
tRWH	Read/Write Hold Time	0	-	-	ns	
tadH	Address Hold Time	0	-	-	ns	
takH	Acknowledgment Hold Time	10	20	40	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
3. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.
4. Processor accesses are dependent on the $\overline{\mathrm{C} 4 i}$ clock, and so some things are expressed as multiples of the $\overline{\mathrm{C} 4 i}$.

Figure 10. Processor Bus

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

05/23/2000 pgs. 1, 2, and 10.
pgs. 1, 2, and 10.
pgs. 1 and 6 .
pgs. 1, 2, and 10 .

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE

PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4
TC7WBL3305CFK,LF SN74CBT16245CDGGR PI5C3245QE 72V90823PQFG PI3B3861QEX PI3C3126QEX PI3C3245QE PI5C3384QE PI3CH281QE QS3VH16244PAG8 PI3CH400LE PI3B3245LEX PI3B3245LE PI3C3306LEX PI5C3245LEX PI5C3306LEX PI3B3126LE PI3B3125LEX 72V73273BBG 74CBTLV3862PGG QS3126QG QS32245QG QS3244QG QS3245SOG8 QS32X384Q1G QS3VH126QG

