FEATURES:

- 64×36 storage capacity
- Supports clock frequencies up to 67 MHz
- Fast access times of 10ns
- Free-running CLKA and CLKB may be asynchronous or coincident (permits simultaneous reading and writing of data on a single clock edge)
- Synchronous data buffering from Port A to Port B
- Mailbox bypass register in each direction
- Programmable Almost-Full ($\overline{\mathrm{AF}}$) and Almost-Empty ($\overline{\mathrm{AE}})$ flags
- Microprocessor Interface Control Logic
- Full Flag ($\overline{\mathrm{FF}}$) and Almost-Full ($\overline{\mathrm{AF}}$) flags synchronized by CLKA
- Empty Flag ($\overline{\mathrm{EF}}$) and Almost-Empty ($\overline{\mathrm{AE}})$ flags synchronized by CLKB
- Passive parity checking on each Port
- Parity Generation can be selected for each Port
- Available in space-saving 120-pin Thin Quad Flatpack (PFG)
- Green parts available, see ordering information

DESCRIPTION:

The IDT72V3611 is designed to run offa3.3V supply for exceptionally low power consumption. This device is a monolithic, high-speed, low-power, CMOS Synchronous (clocked) FIFO memory which supports clock frequencies up to 67 MHz and has read accesstimes as fastas 10 ns . The 64×36 dualportFIFO buffers datafromPortAto PortB. TheFIFO operates in IDT Standard mode and has flagsto indicateempty and full conditions, and two programmable flags, Almost-Full ($\overline{\mathrm{AF}}$) and Almost-Empty ($\overline{\mathrm{AE}})$, to indicate when a selected number of words is stored in memory. Communication betweeneach portcan take place through two 36-bitmailbox registers. Each mailbox register hasa flag to signal when new mail has been stored. Parity is checked passively on each portand may beignored ifnot desired. Parity generation can be selected

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION (CONTINUED)

for data read from each port. Two or more devices may be used in parallel to create wider data paths.

The IDT72V3611 is a synchronous (clocked) FIFO, meaning each port employs a synchronous interface. All data transfers through a port are gated to the LOW-to-HIGH transition of a portclockby enable signals. The clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple
bidirectional interface between microprocessors and/or buses with synchronous control.

The Full Flag ($\overline{\mathrm{FF}}$) and Almost-Full ($\overline{\mathrm{AF}}$) flag of the FIFO are two-stage synchronized to the portclock that writes datainto its array (CLKA). The Empty Flag ($\overline{\mathrm{EF}})$ and Almost-Empty $(\overline{\mathrm{AE}})$ flag of theFIFO are two-stage synchronized to the port clock that reads data from its array.

The IDT72V3611 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. This device is fabricated using high speed, submicron CMOS technology.

PIN CONFIGURATION

4657 drw02

NOTES:

1. Pin 1 identifier in corner.
2. $\mathrm{NC}=$ No internal connection

PIN DESCRIPTION

| Symbol | Name | I/O | Description |
| :--- | :--- | :---: | :--- | :--- |$|$| A0-A35 | Port-AData | I/O | 36-bit bidirectional data port for side A. |
| :--- | :---: | :--- | :--- |

PIN DESCRIPTION (CONTINUED)

Symbol	Name	$1 / 0$	Description
PEFB	Port-B Parity Error Flag	$\underset{(\text { Port B) }}{0}$	When any byte applied to terminals BO -B35 fails parity, $\overline{\text { FEFB }}$ is LOW. Bytes are organized as $\mathrm{B} 0-\mathrm{B} 8, \mathrm{~B} 9-\mathrm{B} 17, \mathrm{~B} 18-\mathrm{B} 26, \mathrm{~B} 27-\mathrm{B} 35$, with the mostsignificant bit of each byte serving as the parity bit. The type of parity checked is determined by the state of the ODD/EVEN input. The parity trees used to check the B0-B35 inputs are shared by the mail1 register to generate parity if parity generation is selected by PGB. Therefore, if a mail1 read with parity generation is setup by having $\overline{\text { CSB }}$ LOW, ENB HIGH, W//̄RB LOW, MBB HIGH, and PGB HIGH, the $\overline{\text { PEFB }}$ flag is forced HIGH regardless of the state of the BO-B35 inputs
PGA	Port-A Parity Generation	I	Parity is generated for mail2 register reads from port A when PGA is HIGH. The type of parity generated is selected by the state of the ODD/EVEN input. Bytes are organized as AO-A8, A9-A17, A18-A26, and A27-A35. The generated parity bits are output in the mostsignificant bit of each byte.
PGB	Port-B Parity Generation	I	Parity is generated for data reads from port B when PGB is HIGH. The type of parity generated is selected by the state of the ODD/EVEN input. Bytes are organized as $\mathrm{BO}-\mathrm{B8}, \mathrm{B9}$-B17, B18-B26, and B27-B35. The generated parity bits are outputinthe mostsignificantbit of each byte.
$\overline{\mathrm{RST}}$	Reset	1	To resetthe device, four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH transitions of CLKB must occur while $\overline{\text { RST }}$ is LOW. This sets the $\overline{\mathrm{AF}}, \overline{\mathrm{MBF1}}$, and $\overline{\mathrm{MBF}}$ flags HIGH and the $\overline{\mathrm{EF}}, \overline{\mathrm{AE}}$, and $\overline{\mathrm{FF}}$ flags LOW. The LOW-to-HIGH transition of $\overline{\mathrm{RST}}$ latches the status of the FS1 and FSO inputsto selectAlmost-Full and Almost-Emptyflag offset.
W/ $\bar{R} A$	Port-AWrite/Read Select	1	A HIGH selects a write operation and a LOW selects a read operation on port A for a LOW-to-HIGH transition of CLKA. The AO-A35 outputs are in the high-impedance state when W/ $\bar{R} A$ is HIGH .
W/ $\overline{\mathrm{R}} \mathrm{B}$	Port-BWrite/Read Select	1	A HIGH selects a write operation and a LOW selects a read operation on port B for a LOW-to-HIGH transition of CLKB. The BO-B35 outputs are in the high-impedance state when $\mathrm{W} / \overline{\mathrm{R}} \mathrm{B}$ is HIGH .

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR
 TEMPERATURE RANGE (Unless otherwise noted) ${ }^{(1)}$

Symbol	Rating	Commercial	Unit
Vcc	Supply Voltage Range	-0.5 to +4.6	V
$\mathrm{V}^{(2)}$	Input Voltage Range	-0.5 to Vcc +0.5	V
Vo ${ }^{(2)}$	OutputVoltage Range	-0.5 to Vcc +0.5	V
IIK	Input Clamp Current, (VI < 0 or VI> Vcc)	± 20	mA
IOK	Output Clamp Current, (Vo = < 0 or Vo > Vcc)	± 50	mA
Iout	Continuous Output Current, (Vo = 0 to Vcc)	± 50	mA
IcC	Continuous Current Through Vcc or GND	± 500	mA
TSTG	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC	Supply Voltage	3.0	3.3	3.6	V
VIH	High-Level Input Voltage	2	-	Vcc +0.5	V
VIL	Low-Level InputVoltage	-	-	0.8	V
IOH	High-Level OutputCurrent	-	-	-4	mA
IOL	Low-Level OutputCurrent	-	-	8	mA
TA	OperatingFree-Air Temperature	0	-	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)

Symbol	Parameter	Test Conditions		IDT72V3611 Commercial tCLK $=15$ ns			Unit
				Min.	Typ. ${ }^{(1)}$	Max.	
Vor	OutputLogic "1"Voltage	$\mathrm{Vcc}=3.0 \mathrm{~V}$,	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	-	V
VOL	OutputLogic "0"Voltage	$\mathrm{Vcc}=3.0 \mathrm{~V}$,	$\mathrm{IOL}=8 \mathrm{~mA}$	-	-	0.5	V
ILI	Input Leakage Current (Any Input)	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}$ or 0	-	-	± 5	$\mu \mathrm{A}$
ILO	OutputLeakageCurrent	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{Vo}=\mathrm{Vcc}$ or 0	-	-	± 5	$\mu \mathrm{A}$
ICC ${ }^{(2)}$	Standby Current	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0	-	-	500	$\mu \mathrm{A}$
CIN	InputCapacitance	$\mathrm{VI}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	-	4	-	pF
Cout	OutputCapacitance	$\mathrm{Vo}=0$,	$\mathrm{f}=1 \mathrm{MHZ}$	-	8	-	pF

NOTES:

1. All typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (Ioc) vs. Clock Frequency (fs).

DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION

The ICC(f) data for the graph was taken while simultaneously reading and writing the FIFO on the IDT72V3611 with CLKA and CLKB operating atfrequency fs. All datainputs and data outputs change state during each clock cycle to consume the highest supply current. Data outputs were disconnected to normalize the graphto azero-capacitance load. Once the capacitance load per data-outputchannel is known, the power dissipation can be calculated with the equation below.

CALCULATING POWER DISSIPATION

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of the IDT72V3611 may be calculated by:

$$
\begin{aligned}
& \text { PT }=\operatorname{VCc} \times \operatorname{IcC}(f)+\Sigma\left(\mathrm{CL} \times(\mathrm{VOH}-\mathrm{VoL})^{2} \times \mathrm{fo}\right) \\
& \text { N } \\
& \text { where: }
\end{aligned}
$$

When no read or writes are occurring on this device, the power dissipated by a single clock (CLKA or CLKB) input running at frequency fs is calculated by:

PT $=\mathrm{Vcc} \times$ fs $\times 0.025 \mathrm{~mA} / \mathrm{MHz}$

Figure 1. Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fs)

TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY

 VOLTAGE AND OPERATING FREE-AIR TEMPERATURES| Symbol | Parameter | IDT72V3611L15 | | Unit |
| :---: | :---: | :---: | :---: | :---: |
| | | Min. | Max. | |
| fs | Clock Frequency, CLKA or CLKB | - | 66.7 | Mhz |
| tCLK | Clock Cycle Time, CLKA or CLKB | 15 | - | Mhz |
| tCLKH | Pulse Duration, CLKA or CLKB HIGH | 6 | - | ns |
| tCLKL | Pulse Duration, CLKA or CLKB LOW | 6 | - | ns |
| tDS | Setup Time, A0-A35 before CLKA \uparrow and B0-B35 before CLKB \uparrow | 4 | - | ns |
| tENS1 | $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R}}$ A, before CLKA \uparrow; $\overline{\mathrm{CSB}}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{B}$ before CLKB \uparrow | 6 | - | ns |
| tENS2 | ENA before CLKA \uparrow; ENB before CLKB \uparrow | 4 | - | ns |
| tens3 | MBA before CLKA \uparrow; $\overline{\text { ENB }}$ before CLKB \uparrow | 4 | - | ns |
| tPGS | Setup Time, ODD/EVEN and PGB before CLKB $\uparrow^{(1)}$ | 4 | - | ns |
| tRSTS | Setup Time, $\overline{\mathrm{RST}}$ LOW before CLKA \uparrow or CLKB $\uparrow^{(2)}$ | 5 | - | ns |
| tFSS | Setup Time, FS0 and FS1 before $\overline{\text { RST }}$ HIGH | 5 | - | ns |
| DDH | Hold Time, A0-A35 after CLKA \uparrow and B0-B35 after CLKB \uparrow | 1 | - | ns |
| tENH1 | $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R}}$ A after CLKA \uparrow; $\overline{\mathrm{CSB}}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{B}$ after CLKB \uparrow | 1 | - | ns |
| tENH2 | ENA after CLKA \uparrow; ENB after CLKB \uparrow | 1 | | ns |
| tENH3 | MBA after CLKA \uparrow; MBB after CLKB \uparrow | 1 | | nS |
| tPGH | Hold Time, ODD/EVEN and PGB after CLKB $\uparrow^{(1)}$ | 0 | - | ns |
| tRSTH | Hold Time, $\overline{\text { RST }}$ LOW after CLKA \uparrow or CLKB $\uparrow^{(2)}$ | 6 | - | ns |
| tFSH | Hold Time, FS0 and FS1 after $\overline{\text { RST }}$ HIGH | 4 | - | ns |
| tSKEW1 ${ }^{(3)}$ | Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{EF}}, \overline{\mathrm{FF}}$ | 8 | - | ns |
| tSKEW2 ${ }^{(3,4)}$ | Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{AE}}, \overline{\mathrm{AF}}$ | 14 | - | ns |

NOTES:

1. Only applies for a rising edge of CLKB that does a FIFO read.
2. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
3. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
4. Design simulated, not tested.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30 pF

Symbol	Parameter	IDT72V3611L15		Unit
		Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	66.7	MHz
tA	Access Time, CLKB \uparrow to B0-B35	2	10	ns
tWFF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{FF}}$	2	10	ns
tREF	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{EF}}$	2	10	ns
tPAE	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{AE}}$	2	10	ns
tPAF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AF}}$	2	10	ns
tPMF	Propagation Delay Time, CLKA \uparrow to $\overline{\text { MBF1 }}$ LOW or $\overline{\text { MBF2 }}$ HIGH and CLKB \uparrow to $\overline{\text { MBF2 }}$ LOW or $\overline{\text { MBF1 }}$ HIGH	1	9	ns
tPMR	Propagation Delay Time, CLKA \uparrow to $\mathrm{B0} 0-\mathrm{B} 35{ }^{(1)}$ and CLKB \uparrow to $\mathrm{A} 0-\mathrm{A} 35{ }^{(2)}$	2	10	ns
tmDV	Propagation Delay Time, MBB to B0-B35 Valid	1	10	ns
tPDPE	Propagation Delay Time, A0-A35 Valid to $\overline{\text { PEFA }}$ Valid; B0-B35 Valid to $\overline{\text { PEFB }}$ Valid	2	10	ns
tPOPE	Propagation Delay Time, ODD/ $\overline{\text { EVEN }}$ to $\overline{\text { PEFA }}$ and $\overline{\text { PEFB }}$	2	10	ns
tPOPB $^{(3)}$	Propagation Delay Time, ODD/EVEN to Parity Bits (A8, A17, A26, A35) and (B8, B17, B26, B35)	2	10	ns
tPEPE	Propagation Delay Time, $\overline{\mathrm{CSA}}, \mathrm{ENA}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}, \mathrm{MBA}$, or PGA to $\overline{\text { PEFA }} ; \overline{C S B}, E N B, W / \bar{R} B, M B B$, or PGB to $\overline{\text { PEFB }}$	1	10	ns
tPEPB ${ }^{(3)}$	Propagation Delay Time, $\overline{\mathrm{CSA}}, \mathrm{ENA}$ W/ $\overline{\mathrm{R}}$, MBA, or PGA to Parity Bits (A8, A17, 	2	10	ns
tRSF	Propagation Delay Time, $\overline{\mathrm{RST}}$ to $\overline{\mathrm{AE}}$ LOW and ($\overline{\mathrm{AF}}, \overline{\mathrm{MBF}}, \overline{\mathrm{MBF}}$) HIGH	1	15	ns
ten	Enable Time, $\overline{\mathrm{CSA}}$ and $W / \overline{\mathrm{R}} \mathrm{A}$ LOW to A0-A35 Active and $\overline{\mathrm{CSB}}$ LOW and $\bar{W} /$ RB HIGH to B0-B35 Active	2	10	ns
tDIS	Disable Time, $\overline{\mathrm{CSA}}$ or W/ $\overline{\mathrm{R} A ~ H I G H ~ t o ~ A 0-A 35 ~ a t ~ h i g h ~ i m p e d a n c e ~}$ and $\overline{\mathrm{CSB}}$ HIGH or $\bar{W} /$ RB LOW to B0-B35 at high impedance	1	9	ns

NOTES:

1. Writing data to the mail1 register when the BO-B35 outputs are active and MBB is HIGH.
2. Writing data to the mail2 register when the AO-A35 outputs are active and MBA is HIGH.
3. Only applies when reading data from a mail register.

SIGNALDESCRIPTION

RESET ($\overline{\operatorname{RST}}$)

The IDT72V3611 is reset by taking the Reset ($\overline{\mathrm{RST}}$) input LOW for at least four port-A clock (CLKA) and four port B clock (CLKB) LOW-to-HIGH transitions. The resetinputcan switch asynchronously tothe clocks. Adevice resetinitializes the internal read and write pointers of the FIFO and forces the Full Flag($\overline{\mathrm{FF}}$)LOW, theEmptyFlag $(\overline{\mathrm{EF}})$ LOW, the Almost-Emptyflag $(\overline{\mathrm{AE}})$ LOW, and the Almost-Full flag ($\overline{\mathrm{AF}}$) HIGH. A reset also forces the Mailbox Flags ($\overline{\text { MBF1 }}, \overline{\text { MBF2 }}$) HIGH. After a reset, $\overline{\text { FF }}$ is set HIGH after two LOW-to-HIGH transitions of CLKA. The device must be reset after power up before data is writtentoits memory.

A LOW-to-HIGH transition on the $\overline{\text { RST input loads the Almost-Full and }}$ Almost-Empty Offset register (X) with the value selected by the Flag Select

TABLE 1 -FLAG PROGRAMMING

Almost-Full and Almost-Empty Flag Offset Register (X)	FS1	FS0	$\overline{\text { RST }}$
16	H	H	\uparrow
12	H	L	\uparrow
8	L	H	\uparrow
4	L	L	\uparrow

(FSO, FS1) inputs. The values that can be loaded into the register are shown in Table 1. For the relevant Reset timing and preset value loading timing diagram, see Figure 2. The relevantWritetiming diagram for PortA can befound in Figure 3.

FIFO WRITEIREAD OPERATION

The state of the port-A data (A0-A35) outputs is controlled by the portA Chip Select ($\overline{\mathrm{CSA}})$ and the port-A Write/Read select $(\mathrm{W} / \overline{\mathrm{R}} \mathrm{A})$. The A0-A35 outputs are in the high-impedance state when either $\overline{C S A}$ or W/ $\bar{R} A$ is HIGH. The A0-A35 outputs are active when both $\overline{\mathrm{CSA}}$ and $\mathrm{W} / \overline{\mathrm{R}} A$ are LOW. Data is loaded into the FIFO from the AO-A35 inputs on a LOW-to-HIGH transition of CLKA when $\overline{C S A}$ is LOW, W/ $\bar{R} A$ is HIGH, ENA is HIGH, MBA is LOW, and FF is HIGH (see Table 2).

The port- B control signals are identical to those of port A . The state of the port-B data ($\mathrm{B} 0-\mathrm{B} 35$) outputs is controlled by the port-B Chip Select (CSB) and the port-B Write/Read select (W/RB). The BO-B35 outputs are in the high-impedance state when either $\overline{\mathrm{CSB}}$ or W/RB is HIGH. The BO-B35 outputs are active when both $\overline{\mathrm{CSB}}$ and W/RB are LOW. Datais read from the FIFO tothe BO-B35 outputs by aLOW-to-HIGHtransition of CLKB when $\overline{\text { CSB }}$ is LOW, W/RB is LOW, ENB is HIGH, MBB is LOW, and EF is HIGH (see Table 3). The relevant Read timing diagram for Port B can be found in Figure 4.

The setup and hold-time constraints to the port clocks for the port Chip Selects ($\overline{\mathrm{CSA}}, \overline{\mathrm{CSB}}$) and Write/Read selects (W/ $\overline{\mathrm{R} A, ~ W / \overline{R B}) \text {) are only for enabling }}$ write and read operations and are not related to HIGH-impedance control of the data outputs. If a port enable is LOW during a clock cycle, the port's Chip Select and Write/Read select can change states during the setup and hold-time window of the cycle.

TABLE 2 - PORT-A ENABLE FUNCTION TABLE

$\overline{\text { CSA }}$	W/R̄A	ENA	MBA	CLKA	Data A (A0-A35) I/O	Port Functions
H	X	X	X	X	Input	None
L	H	L	X	X	Input	None
L	H	H	L	\uparrow	Input	FIFOWrite
L	H	H	H	\uparrow	Input	Mail1 Write
L	L	L	L	X	Output	None
L	L	H	L	\uparrow	Output	None
L	L	L	H	X	Output	None
L	L	H	H	\uparrow	Output	Mail2 Read (set $\overline{\text { MBF2 HIGH) }}$

TABLE 3 - PORT-B ENABLE FUNCTION TABLE

$\overline{\text { CSB }}$	WI不B	ENB	MBB	CLKB	Data B (B0-B35) IIO	Port Functions
H	X	X	X	X	Input	None
L	H	L	X	X	Input	None
L	H	H	L	\uparrow	Input	None
L	H	H	H	\uparrow	Input	Mail2Write
L	L	L	L	X	Output	None
L	L	H	L	\uparrow	Output	FIFO Read
L	L	L	H	X	Output	None
L	L	H	H	\uparrow	Output	Mail1 Read (set MBF1 HIGH)

SYNCHRONIZED FIFO FLAGS

Each FIFO flag is synchronized to its portclock throughtwo flip-flopstages. This is done to improve the flags' reliability by reducing the probability of metastable events on their outputs when CLKA and CLKB operate asynchronously to one another. $\overline{\mathrm{FF}}$ and $\overline{\mathrm{AF}}$ are synchronized to CLKA. $\overline{\mathrm{EF}}$ and $\overline{\mathrm{AE}}$ are synchronized to CLKB. Table 4 shows the relationship of the flags to the level of FIFO fill.

EMPTY FLAG ($\overline{\mathrm{EF}}$)

The FIFO Empty Flag is synchronized to the port clock that reads data from its array (CLKB). When the $\overline{E F}$ is HIGH, new data can be read to the FIFO output register. When the $\overline{\mathrm{EF}}$ is LOW, the FIFO is empty and attempted FIFO reads are ignored.

The FIFO read pointer is incremented each time a new word is clocked to its output register. The state machine that controls an EF monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is empty, empty+1, or empty+2. A word written to the FIFO can be read to the FIFO output register in a minimum of three port-B clock (CLKB) cycles. Therefore, an $\overline{\mathrm{EF}}$ is LOW if a word in memory is the next data to be sent to the FIFO output register and two CLKB cycles have not elapsed since the time the word was written. The $\overline{E F}$ of theFIFO is setHIGH by the second LOW-to-HIGH transition of CLKB, and the new data word can be read to the FIFO output register in the following cycle.

A LOW-to-HIGH transition on CLKB begins the first synchronized cycle of a write if the clock transition occurs at time tSKEW1 or greater after the write. Otherwise, the subsequent CLKB cycle can be the first synchronization cycle (see Figure 5).

FULL FLAG ($\overline{F F}$)

The FIFO Full Flag is synchronized to the port clock that writes data to its array (CLKA). When the FF is HIGH, aFIFO memory location is free to receive new data. No memory locations are free whenthe $\overline{\mathrm{FF}}$ is LOW and attempted writes to the FIFO are ignored.

Eachtime aword is written tothe FIFO, its write pointer is incremented. The state machine that controls the $\overline{\mathrm{FF}}$ monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is full, full-1, or full-2. From the time a word is read from the FIFO, its previous memory location is ready to be written in a minimum of three port-A clock cycles. Therefore, a $\overline{\mathrm{FF}}$ is LOW ifless thantwo CLKA cycles have elapsed since the nextmemory write location has been read. The second LOW-to-HIGH transition on CLKA after

TABLE 4 - FIFO FLAG OPERATION

Number of Words in the FIFO	Synchronized to CLKB		Synchronized to CLKA	
	$\overline{\mathrm{EF}}$	$\overline{\mathrm{AE}}$	$\overline{\mathrm{AF}}$	$\bar{F} \bar{F}$
0	L	L	H	H
1 to X	H	L	H	H
$(\mathrm{X}+1)$ to [64-(X+1)]	H	H	H	H
$(64-X)$ to 63	H	H	L	H
64	H	H	L	L

NOTE:

1. X is the value in the Almost-Empty flag and Almost-Full flag register.
the read sets the $\overline{\mathrm{FF}}$ HIGH and data can be written in the following clock cycle.
ALOW-to-HIGH transition on CLKA beginsthe firstsynchronization cycle of a read ifthe clock transition occurs at time tSKEW1 or greater after the read. Otherwise, the subsequentclockcycle canbethefirstsynchronizationcycle(see Figure 6).

ALMOST-EMPTY FLAG ($\overline{\mathrm{AE}}$)

The FIFO Almost-Empty flag is synchronized to the port clock that reads datafromitsarray (CLKB). The state machinethatcontrolsthe $\overline{\mathrm{AE}}$ flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is almost-empty, almost-empty +1 , or almost-empty +2 . The almost-empty state is defined by the value of the Almost-Full and Almost-Empty Offsetregister (X). This register is loaded with one offour preset values during a device reset (see the Reset section). The $\overline{\mathrm{AE}}$ flag is LOW when the FIFO contains X or less words in memory and is HIGH when the FIFO contains (X+1) or more words.

Two LOW-to-HIGH transitions on the port-B clock (CLKB) are required after a FIFO write for the $\overline{\mathrm{AE}}$ flag to reflect the new level of fill. Therefore, the $\overline{\mathrm{AE}}$ flag of a FIFO containing $(X+1)$ or more words remains LOW if two CLKB cycles have notelapsed since the write that filled the memory to the $(X+1)$ level. The $\overline{\mathrm{AE}}$ flag is set HIGH by the second CLKB LOW-to-HIGH transition after the FIFO write that fills memory to the (X+1) level. A LOW-to-HIGH transition on CLKB begins the firstsynchronization cycle if itoccurs attime tSKEW2 or greater after the write thatfills the FIFOto $(X+1)$ words. Otherwise, the subsequentCLKB cycle can be the first synchronization cycle (see Figure 7).

ALMOST-FULL FLAG ($\overline{\mathrm{AF}}$)

The FIFO Almost-Full flag is synchronized to the port clock that writes data to its array (CLKA). The state machine that controls an $\overline{\mathrm{AF}}$ flag monitors a write pointer and read pointer comparator that indicates when the FIFO memory status is almost-full, almost-full-1, or almost-full-2. The almost-full state is defined by the value of the Almost-Full and Almost-Empty Offsetregister(X). This register is loaded with one of four preset values during a device reset(see the Resetsection). The $\overline{\mathrm{AF}}$ flag is LOW whentheFIFO contains $(64-X)$ or more words in memory and is HIGH whenthe FIFO contains [64-(X+1)] or lesswords.

Two LOW-to-HIGH transitions on the port-A clock (CLKA) are required after a FIFO read for the $\overline{\mathrm{AF}}$ flag to reflect the new level of fill. Therefore, the $\overline{\text { AF flag of aFIFO containing }[64-(X+1)] \text { or less words remains LOW iftwo CLKA }}$ cycles have not elapsed since the read that reduced the number of words in memory to $[64-(\mathrm{X}+1)]$. The $\overline{\mathrm{AF}}$ flag is set HIGH by the second CLKALOW-toHIGHtransitionaftertheFIFO read thatreduces the number of words in memory to [64-(X+1)]. ALOW-to-HIGH transition on CLKA begins the firstsynchronization cycle if it occurs attime tSKEW2 or greater after the read that reduces the number of words in memory to [64-(X+1)]. Otherwise, the subsequent CLKA cycle can be the first synchronization cycle (see Figure 8).

MAILBOX REGISTERS

Two 36-bitbypass registers are on the IDT72V3611 to passcommand and control information between portA and portB. The Mailbox select(MBA, MBB) inputs choose between a mail register and a FIFO for a port data transfer operation. ALOW-to-HIGHtransition on CLKA writes A0-A35 datato the mail1 register when port-A write is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBAHIGH. A LOW-to-HIGH transition on CLKB writes B0-B35 data to the mail2 register when port-B write is selected by $\overline{C S B}, W / \bar{R} B$, and ENB with MBB HIGH. Writing data to a mail register sets its corresponding flag ($\overline{\mathrm{MBF} 1}$ or $\overline{\mathrm{MBF}}$) LOW. Attempted writes to a mail register are ignored while its mail flag is LOW.

When the port-B data ($\mathrm{B} 0-\mathrm{B} 35$) outputs are active, the data on the bus comesfromtheFIFO outputregisterwhenthe port-BMailboxselect(MBB) input
is LOW and from the mail1 register when MBB is HIGH. Mail2 data is always present on the port-A data (A0-A35) outputs when they are active. The Mail1 RegisterFlag (MBF1) is setHIGH byaLOW-to-HIGH transition on CLKB when a port-B read is selected by $\overline{C S B}, W / \overline{R B}$, and ENB with MBB HIGH. The Mail2 RegisterFlag (MBF2) is setHIGH byaLOW-to-HIGHtransition onCLKA when a port-A read is selected by $\overline{C S A}$, W/RA, and ENA with MBA HIGH. The data in a mail register remains intact after itis read and changes only when new data is written to the register. For relevant mail register and mail register flag timing diagrams, see Figure 9 and Figure 10.

PARITY CHECKING

The port-A (A0-A35) inputs and port-B (B0-B35) inputs each have four parity trees to check the parity of incoming (or outgoing) data. A parity failure on one or more bytes of the input bus is reported by a LOW level on the port Parity ErrorFlag ($\overline{\text { PEFA }}, \overline{\text { PEFB }}$). Odd or even parity checking can be selected, and the Parity Error Flags can be ignored if this feature is not desired.

Parity statusischecked oneachinputbusaccording to the level ofthe Odd/ Even parity (ODD/EVEN) select input. A parity error on one or more bytes of a portis reported bya LOWlevel on the corresponding portParity Error Flag ($\overline{\mathrm{PEFA}}, \overline{\mathrm{PEFB}}$) output. Port-A bytes are arranged as A0-A8, A9-A17, A18A26, and A27-A35, and port-B bytes are arranged as B0-B8, B9-B17, B18B26, and B27-B35. When Odd/Even parity is selected, aportParity Error Flag ($\overline{\text { PEFA }}, \overline{\text { PEFB }}$) is LOW if any byte on the porthas an odd/even number of LOW levels applied to its bits.

The four parity trees used to check the A0-A35 inputs are shared by the mail2 register when parity generation is selected for port-A reads (PGA=HIGH). When port-A read from the mail2 register with parity generation is selected with $\overline{\mathrm{CSA}}$ LOW, ENA HIGH, W/RA LOW, MBA HIGH, and PGA HIGH, the port-A Parity Error Flag ($\overline{\mathrm{PEFA}}$) is held HIGH regardless of the levels applied to the A0-A35 inputs. Likewise, the parity trees used to check the B0B35 inputs are shared by the mail1 register when parity generation is selected for port-B reads (PGB=HIGH). When a port-B read from the mail1 registerwith
parity generation is selected with $\overline{\mathrm{CSB}}$ LOW, ENB HIGH, W/R B LOW, MBB HIGH, and PGB HIGH, the port-B Parity Error Flag ($\overline{\mathrm{PEFB}})$ is held HIGH regardless of the levels applied to the B0-B35 inputs.

PARITYGENERATION

A HIGH level on the port-A Parity Generate select(PGA) or port-B Parity Generate select (PGB) enables the IDT72V3611 to generate parity bits for port reads fromaFIFO or mailbox register. Port-A bytes are arranged as A0A8, A9-A17, A18-A26, and A27-A35, with the most significant bit of each byte used as the parity bit. Port-B bytes are arranged as B0-B8, B9-B17, B18-B26, and B27-B35, withthe mostsignificant bit of each byte used as the parity bit. A write to a FIFO or mail register stores the levels applied to all thirty-six inputs regardless of the state of the Parity Generate select(PGA, PGB) inputs. When data is read from a port with parity generation selected, the lower eight bits of each byte are used to generate a parity bit according to the level on the ODD/ EVEN select. The generated parity bits are substituted for the levels originally written to the most significant bits of each byte as the word is read to the data outputs.

Parity bits for FIFO data are generated after the data is read from the FIFO RAM and before the data is written to the output register. Therefore, the portB Parity Generate select (PGB) and ODD/EVEN have setup and hold time constraints to the port-B clock (CLKB) for a rising edge of CLKB used to read a new word to the FIFO output register.

The circuit used to generate parity for the mail1 data is shared by the portB bus (B0-B35) to check parity and the circuit used to generate parity for the mail2 data is shared by the port-A bus (A0-A35) to check parity. The shared parity trees of a portare used to generate parity bits for the datain a mail register whenthe portWrite/Readselect(W/RAA, W/R̄B) inputisLOW, the portMail select (MBA, MBB) input is HIGH, Chip Select ($\overline{\mathrm{CSA}}, \overline{\mathrm{CSB}}$) is LOW, Enable (ENA, ENB) is HIGH, and the port Parity Generate select (PGA, PGB) is HIGH. Generating parity for mail register data does not change the contents of the register (see Figure 13 and Figure 14).

Figure 2. Device Reset and Loading the X Register with the Value of Eight

Figure 3. FIFO Write Cycle Timing

Figure 4. FIFO Read Cycle Timing

NOTE:

1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{E F}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEW1, then the transition of $\overline{\mathrm{EF}}$ HIGH may occur one CLKB cycle later than shown.

Figure 5. $\overline{\mathrm{EF}}$ Flag Timing and First Data Read when the FIFO is Empty

NOTE:

1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{\mathrm{FF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskewi, then the transition of $\overline{\mathrm{FF}}$ HIGH may occur one CLKA cycle later than shown.

Figure 6. FF Flag Timing and First Available Write when the FIFO is Full

NOTES:

1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AE}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskewz, then $\overline{\mathrm{AE}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO write $(\overline{\mathrm{CSA}}=\mathrm{L}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}=\mathrm{H}, \mathrm{MBA}=\mathrm{L})$, FIFO read $(\overline{\mathrm{CSB}}=\mathrm{L}, \mathrm{W} / \overline{\mathrm{R}} B=\mathrm{L}, M B B=\mathrm{L})$.

Figure 7. Timing for $\overline{\mathrm{AE}}$ when the FIFO is Almost-Empty

NOTES:

1. tskewz is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEW2, then $\overline{\mathrm{AF}}$ may transition HIGH one CLKA cycle later than shown.
2. FIFO write $(\overline{\mathrm{CSA}}=\mathrm{L}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}=\mathrm{H}, \mathrm{MBA}=\mathrm{L})$, FIFO read $(\overline{\mathrm{CSB}}=\mathrm{L}, \mathrm{W} / \overline{\mathrm{R}} B=\mathrm{L}, \mathrm{MBB}=\mathrm{L})$.

Figure 8. Timing for $\overline{\mathrm{AF}}$ when the FIFO is Almost-Full

NOTE:

1. Port-B parity generation off $(P G B=L)$

Figure 9. Timing for Mail1 Register and MBF1 Flag

1. Port-A parity generation off $(\mathrm{PGA}=\mathrm{L})$

Figure 10. Timing for Mail2 Register and $\overline{\text { MBF2 }}$ Flag

NOTE:

1. $\overline{C S A}=L$ and $E N A=H$.

Figure 11. ODD/EVEN, WIRA, MBA, and PGA to PEFA Timing

NOTE:

1. $\overline{\mathrm{CSB}}=\mathrm{L}$ and $\mathrm{ENB}=\mathrm{H}$.

Figure 12. ODD/EVEN, W/RB, MBB, and PGB to $\overline{\text { PEFB }}$ Timing

NOTE:

1. $\mathrm{ENA}=\mathrm{H}$

Figure 13. Parity Generation Timing when reading from the Mail2 Register

NOTE:

1. $E N B=H$.

Figure 14. Parity Generation Timing when reading from the Mail1 Register

PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY
LOAD CIRCUIT

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PULSE DURATIONS

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

NOTE:

1. Includes probe and jig capacitance.

Figure 15. Load Circuit and Voltage Waveforms

ORDERING INFORMATION

Tray
Tape and Reel
Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Green

Thin Quad Flat Pack (PNG120)
Commercial
Clock Cycle Time (tCLK) Speed in Nanoseconds

Low Power
$64 \times 36-3.3 V$ SyncFIFO

ORDERABLE PART INFORMATION

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
15	72V3611L15PFG	PNG120	TQFP	C
	72V3611L15PFG8	PNG120	TQFP	C

DATASHEET DOCUMENT HISTORY

$07 / 10 / 2000$	pg. 1
$05 / 27 / 2003$	pg. 6.
$06 / 07 / 2005$	pgs. 1, 2, 3 and 20.
$02 / 10 / 2009$	pg. 20.
$11 / 07 / 2013$	pgs. 1, 2, 5, 7, 8, 10 and 19.
$01 / 09 / 2014$	pg. 2.
$07 / 15 / 2019$	pg. 1,2 and 19.
$02 / 10 / 2020$	pgs. 1-20.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for FIFO category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
CY7C425-25LMB CY7C454-14LMB IDT7202LA50J CY7C464A-10JI 5962-8866903YA 5962-8866905XA 5962-8986302YA 59629071503MXA 5962-9961502QYA 5962-9158505MXA 5962-8986305ZA 5962-8986305UA 5962-8986303XA 5962-8986302ZA 596289523052A 5962-8866904XA 72241L10JG CY7C433-10AXC 5962-8986306YA SN74V293PZAEP CY7C429-20JC CY7C433-15JC 7200L25JI 7202LA12TPG 7204L25SO 72125L25SOG 72V04L35J IDT72231L25PF 72265LA10PFG 72V293L7-5PFGI 72V241L10PF CY7C429-10PC 7203L50P 72T1845L5BB SN74ACT7806-20DL SN74ACT2229DW SN74ACT7804-20DL SN74ACT7814-20DL SN74ALVC7804-40DL CY7C4225V-15ASC SN74V245-10PAG 72210L10TPG 72V03L15JG CY7C425-20JXCT CY7C425-20JXC 7282L12PAG SN74ACT7802-25FN SN74V215-7PAG SN74V235-7PAG SN74V293-10PZA

