DATASHEET

## FEATURES:

- 1,024 x 1,024 channel non-blocking switching at $8.192 \mathrm{Mb} / \mathrm{s}$
- Per-channel variable or constant throughput delay
- Automatic identification of ST-BUS ${ }^{\circledR} / G C$ interfaces
- Accepts 8 Serial Data Streams of $8.192 \mathrm{Mb} / \mathrm{s}$
- Automatic frame offset delay measurement
- Per-stream frame delay offset programming
- Per-channel high impedance output control
- Per-channel Processor Mode
- Control interface compatible to Intel/Motorola CPUs
- Connection memory block programming
- Available in 64-pin Thin Plastic Quad Flatpack (TQFP) and 64-pin Small Thin Quad Flatpack (STQFP)
- 3.3V Power Supply
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 3.3 V IIO with 5 V Tolerant Inputs


## DESCRIPTION:

The IDT72V70810 is a non-blocking digital switch that has a capacity of $1,024 \times 1,024$ channels at a serial bit rate of $8.192 \mathrm{Mb} / \mathrm{s}$. Some of the main features are: programmable stream and channel control, Processor Mode, input offset delay and high-impedance output control.

Per-stream input delay control is provided for managing large multi-chip switches that transport both voice channel and concatenated data channels. In addition, inputstreams can be individually calibrated for inputframe offset.

## FUNCTIONAL BLOCK DIAGRAM



## PIN CONFIGURATION



TQFP 0.80 mm pitch, $14 \mathrm{~mm} \times 14 \mathrm{~mm}$ (PN64-1, order code: PF) STQFP 0.50 pitch, $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ (PP64-1, order code: TF) TOP VIEW

NOTES:

1. DNC - Do Not Connect.
2. All I/O pins are 5 V tolerant.

## PIN DESCRIPTION

| Symbol | NAME | I/O | Description |
| :---: | :---: | :---: | :---: |
| GND | Ground. |  | Ground Rail. |
| Vcc | Vcc |  | +3.3 Volt Power Supply. |
| TX0-7 | TX Output 0 to 7 (Three-state Outputs) | 0 | Serial data output stream. These streams have a data rate of $8.192 \mathrm{Mb} / \mathrm{s}$. |
| RX0-7 | RX Input 0 to 7 | I | Serial data input stream. These streams have a data rate of $8.192 \mathrm{Mb} / \mathrm{s}$. |
| FOi | Frame Pulse | 1 | When the WFPS pin is LOW, this input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS® and GCI specifications. When the WFPS pin is HIGH, this pin accepts a negative frame pulse which conforms to WFPS formats. |
| FE/HCLK | Frame Evaluation/ HCLK Clock | 1 | When the WFPS pin is LOW, this pin is the frame measurement input. When the WFPS pin is HIGH, the HCLK (4.096 MHz clock) is required for frame alignment in the wide frame pulse (WFP) mode. |
| CLK | Clock | 1 | Serial clock for shifting data in/out on the serial streams (RX/TX 0-7). This input accepts a 16.384 MHz clock. |
| $\overline{\text { RESET }}$ | Device Reset (Schmitt Trigger Input) | 1 | This input (active LOW) puts the IDT72V70810 in its reset state that clears the device internal counters, registers and brings TX0-7 and microport data outputs to a high-impedance state. The time constant for a power up reset circuit must be a minimum of five times the rise time of the power supply. In normal operation, the RESET pin must be held LOW for a minimum of 100 ns to reset the device. |
| WFPS | Wide Frame Pulse Select | I | When 1, enables the wide frame pulse (WFP) Frame Alignment interface. When 0 , the device operates in ST-BUS®/ GCI mode. |
| A0-7 | Address 0-7 | 1 | When non-multiplexed CPU bus operation is selected, these lines provide the AO-A7 address lines to the internal memories. |
| DS/ $\overline{R D}$ | Data Strobe/Read | 1 | For Motorola multiplexed bus operation, this input is DS. This active HIGH DS input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations. For Motorola non-multiplexed CPU bus operation, this input is DS. This active LOW input works in conjunction with $\overline{\mathrm{CS}}$ to enable the read and write operations. For Intel multiplexed bus operation, this input is $\overline{\mathrm{RD}}$. This active LOW input sets the data bus lines (ADO-7, D8-15) as outputs. |
| $\mathrm{R} / \bar{W} / \overline{\mathrm{WR}}$ | Read/Write / Write/Read | 1 | In the cases of Motorola non-multiplexed and multiplexed bus operations, this input is $R / \bar{W}$. This input controls the direction of the data bus lines (AD0-7, D8-15) during a microprocessor access. For Intel multiplexed bus operation, this input is $\overline{W R}$. This active LOW input is used with $\overline{\mathrm{RD}}$ to control the data bus (ADO-7) lines as inputs. |
| $\overline{\mathrm{CS}}$ | Chip Select | 1 | Active LOW input used by a microprocessor to activate the microprocessor port of IDT72V70810. |
| AS/ALE | Address Strobe or Latch Enable | 1 | This input is used if multiplexed bus operation is selected via the IM input pin. For Motorola non-multiplexed bus operation, connect this pin to ground. |
| IM | CPU Interface Mode | 1 | When IM is HIGH, the microprocessor port is in the multiplexed mode. When IM is LOW, the microprocessor port is in non-multiplexed mode. |
| ADO-7 | Address/Data Bus 0 to 7 | I/O | These pins are the eight least significant data bits of the microprocessor port. In multiplexed mode, these pins are also the input address bits of the microprocessor port. |
| D8-15 | Data Bus 8-15 | 1/0 | These pins are the eight most significant data bits of the microprocessor port. |
| $\overline{\text { DTA }}$ | Data Transfer Acknowledgment | 0 | This active LOW output signal indicates that a data bus transfer is complete. When the bus cycle ends, this pin drives HIGH and then goes high-impedance, allowing for faster bus cycles with a weaker pull-up resistor. A pull-up resistor is required to hold a HIGH level when the pin is in high-impedance. |
| CCO | Control Output | 0 | This is a $16.384 \mathrm{Mb} / \mathrm{s}$ output containing 2.048 bits per frame respectively. The level of each bit is determinedby the CCO bit in the connection memory. See External Drive Control Section. |
| ODE | Output Drive Enable | I | This is the output enable control for the TX0 to TX7 serial outputs. When ODE input is LOW and the OSB bit of the IMS register is LOW, TXO-7 are in a high-impedance state. If this input is HIGH, the TXO-7 output drivers are enabled. However, each channel may still be put into a high-impedance state by using the per channel control bit in the connection memory. |

## FUNCTIONAL DESCRIPTION

The IDT72V70810 is capable of switching up to $1,024 \times 1,024,64 \mathrm{Kbit/s}$ PCM or $N \times 64$ Kbit/s channel data. The device maintains frame integrity in data applications and minimum throughput delay for voice applications on a per channel basis.

The serial input streams of the IDT72V70810 have a bit rate of $8.192 \mathrm{Mb} / \mathrm{s}$ and are arranged in 125 ms wide frames, which contain 128 channels. The data rates on input and output streams are identical.

In Processor Mode, the microprocessor can access input and output time-slots on a per channel basis allowing for transfer of control and status information. The IDT72V70810 automatically identifies the polarity of the frame synchronization input signal and configures the serial streams to either ST-BUS ${ }^{\circledR}$ or GCl formats.

With the variety of different microprocessor interfaces, IDT72V70810 has provided an Input Mode pin (IM) to help integrate the device into different microprocessor based environments: Non-multiplexed or Multiplexed. These interfaces provide compatibility with multiplexed and Motorola non-multiplexed buses. The device can also resolve different control signals eliminating the use of glue logic necessary to convert the signals ( $\mathrm{R} / \overline{\mathrm{W}} / \overline{\mathrm{WR}}, \mathrm{DS} / \overline{\mathrm{RD}}, \mathrm{AS} / \mathrm{ALE}$ ).

The frame offset calibration function allows users to measure the frame offset delay using a frame evaluation pin (FE). The input offset delay can be programmed for individual streams using internal frame input offset registers, see Table 8.

The internal loopback allows the TX output data to be looped around to the RX inputs for diagnostic purposes.

A functional Block Diagram of the IDT72V70810 is shown in Figure 1.

## DATA AND CONNECTION MEMORY

The received serial data is converted to parallel format by internal seri-al-to-parallel converters and stored sequentially in the data memory. The 8 KHz input frame pulse ( $\overline{\mathrm{FOi}})$ is used to generate channel and frame boundaries of the input serial data. Depending on the interface mode select (IMS) register, the usable data memory may be as large as 1,024 bytes.

Data to be output on the serial streams (TX0-7) may come from either the data memory or connection memory. For data output from data memory (connection mode), addresses in the connection memory are used. For data to be output from connection memory, the connection memory control bits must set the particular TX output in Processor Mode. One time-slot before the data is to be output, data from either connection memory or data memory is read internally. This allows enough time for memory access and parallel-to-serial conversion.

Clock is required for data and connection memory access.

## CONNECTION AND PROCESSOR MODES

In the Connection Mode, the addresses of the input source data for all output channels are stored in the connection memory. The connection memory is mapped in such a way that each location corresponds to an output channel on the output streams. For details on the use of the source address data (CAB and SAB bits), see Table 10. Once the source address bits are programmed by the microprocessor, the contents of the data memory at the selected address are transferred to the parallel-to-serial converters and then onto a TX output stream.

By having the each location in the connection memory specify an input channel, multiple outputs can specify the same input address. This can be a powerful tool used for broadcasting data.

In Processor Mode, the microprocessor writes data to the connection memory. Each location in the connection memory corresponds to a particular output stream and channel number and is transferred directly to the parallel-to-serial converter one time-slot before it is to be output. This data will be output on the TX streams in every frame until the data is changed by the microprocessor.

As the IDT72V70810 can be used in a wide variety of applications, the device also has memory locations to control the outputs based on operating mode. Specifically, the IDT72V70810 provides five per-channel control bits for the following functions: processor or connection mode, constant or variable delay, enables/three-state the TX output drivers and enables/disable the loopback function. In addition, one of these bits allows the user to control the CCO output.

If an outputchannel is setto a high-impedance state through the connection memory, the TX output will be in a high-impedance state for the duration of that channel. In addition to the per-channel control, all channels on the ST-BUS ${ }^{\circledR}$ outputs can be placed in a high impedance state by either pulling the ODE input pin low or programming the Output Stand-By (OSB) bit in the interface mode selection register. This action overrides the per-channel programming in the connection memory bits.

The connection memory data can be accessed via the microprocessor interface. The addressing of the devices internal registers, data and connection memories is performed through the address input pins and the Memory Select (MS) bit of the control register. For details on device addressing, see Software Control and Control Register bits description (Table 3 and 5).

## SERIAL DATA INTERFACE TIMING

The master clock frequency must always be twice the data rate. For serial data rates of $8.192 \mathrm{Mb} / \mathrm{s}$, the master clock (CLK) must be 16.384 MHz . The input and output stream data rates will always be identical.

The IDT72V70810 provides two differentinterface timing modes ST-BUS ${ }^{\circledR}$ GCI and WFP (wide frame pulse). If the WFPS pin is high, the IDT72V70810 is in the wide frame pulse (WFP) frame alignment mode.

In ST-BUS ${ }^{\circledR} / \mathrm{GCI}$ mode, the input 8 KHz frame pulse can be in either ST-BUS ${ }^{\circledR}$ or GCI format. The IDT72V70810 automatically detects the presence of an input frame pulse and identifies it as either ST-BUS ${ }^{\circledR}$ or GCl . In ST-BUS ${ }^{\circledR}$ format, every second falling edge of the master clock marks a bit boundary and the data is clocked in on the rising edge of CLK, three quarters of the way into the bit cell, see Figure 7. In GCl format, every second rising edge of the master clock marks the bit boundary and data is clocked in on the falling edge of CLK at three quarters of the way into the bit cell, see Figure 8.

## WIDE FRAME PULSE (WFP) FRAME ALIGNMENT TIMING

When the device is in WFP frame alignment mode, the CLK input must be at 16.384 MHz , the FE/HCLK input is 4.096 MHz and the 8 KHz frame pulse is in $\mathrm{ST}^{2}-\mathrm{BUS}^{\circledR}$ format. The timing relationship between CLK, HCLK and the frame pulse is shown in Figure 9.

When WFPS pin is high, the frame alignment evaluation feature is disabled. However, the frame input offset registers may still be programmed to compensate for the varying frame delays on the serial input streams.

## INPUT FRAME OFFSET SELECTION

Input frame offset selection allows the channel alignment of individual input streams to be offset with respect to the output stream channel alignment (i.e. $\overline{\mathrm{FOi}}$ ). Although all input data comes in at the same speed, delays can be
caused by variable path serial backplanes and variable path lengths which may be implemented in large centralized and distributed switching systems. Because data is often delayed, this feature is useful in compensating for the skew between clocks.

Each input stream can have its own delay offset value by programming the frame input offset registers (FOR). The maximum allowable skew is +4.5 master clock (CLK) periods forward with resolution of $1 / 2$ clock period. The output frame offset cannot be offset or adjusted. See Figure 5, Table 8 and 9 for delay offset programming.

## SERIAL INPUT FRAME ALIGNMENT EVALUATION

The IDT72V70810 provides the frame evaluation (FE) input to determine different data input delays with respect to the frame pulse $\overline{\mathrm{FO}}$.

A measurement cycle is started by setting the start frame evaluation (SFE) bit low for at least one frame. When the SFE bit in the IMS register is changed from low to high, the evaluation starts. Two frames later, the complete frame evaluation (CFE) bit of the frame alignment register (FAR) changes from low to high to signal that a valid offset measurement is ready to be read from bits 0 to 11 of the FAR register. The SFE bit must be set to zero before a new measurement cycle started.

InST-BUS ${ }^{\circledR}$ mode, the falling edge of the frame measurementsignal (FE) is evaluated against the falling edge of the ST-BUS ${ }^{\circledR}$ frame pulse. In GCI mode, the rising edge of FE is evaluated against the rising edge of the GCl frame pulse. See Table 7 \& Figure 4 for the description of the frame alignmentregister.

This feature is not available when the WFP Frame Alignment mode is enabled (i.e., when the WFPS pin is connected to VCC).

## MEMORY BLOCK PROGRAMMING

The IDT72V70810 provides users with the capability of initializing the entire connection memory block in two frames. To set bits 11 to 15 of every connection memory location, first program the desired pattern in bits 5 to 9 of the IMS register.

The block programming mode is enabled by setting the memory block program (MBP) bit of the control register high. When the block programming enable (BPE) bit of the IMS register is set to high, the block programming data will be loaded into the bits 11 to 15 of every connection memory location. The other connection memory bits (bit 0 to bit 10) are loaded with zeros. When the memory block programming is complete, the device resets the BPE bit to zero.

## LOOPBACK CONTROL

The loopback control (LPBK) bit of each connection memory location allows the TX output data to be looped backed internally to the RX input for diagnostic purposes.

If the LPBK bit is high, the associated TX output channel data is internally looped back to the RX input channel (i.e., data from TX $n$ channel $m$ routes to the RX $n$ channel $m$ internally); if the LPBK bit is low, the loopback feature is disabled. For proper per-channel loopback operation, the contents of frame delay offset registers must be set to zero.

## DELAY THROUGH THE IDT72V70810

The switching of information from the input serial streams to the output serial streams results in a throughput delay. The device can be programmed to perform time-slot interchange functions with different throughput delay capabilities on the per-channel basis. For voice applications, variable throughput
delay is best as it ensures minimum delay between input and output data. In wideband data applications, constant throughput delay is best as the frame integrity of the information is maintained through the switch.

The delay through the device varies according to the type of throughput delay selected in the $\overline{\mathrm{V}} / \mathrm{C}$ bit of the connection memory.

## VARIABLE DELAY MODE (V/C BIT = 0)

In this mode, the delay is dependent only on the combination of source and destination channels and is independent of input and output streams. The minimum delay achievable in the IDT72V70810 is three time-slots. If the input channel data is switched to the same output channel (channel n , frame $p$ ), it will be output in the following frame (channel $n$, frame $p+1$ ). The same is true if input channel $n$ is switched to output channel $n+1$ or $n+2$. If the input channel $n$ is switched to output channel $n+3, n+4, \ldots$, the new output data will appear in the same frame. Table 1 shows the possible delays for the IDT72V70810 in the variable delay mode.

## CONSTANT DELAY MODE (V/C BIT = 1)

In this mode, frame integrity is maintained in all switching configurations by making use of a multiple data memory buffer. Input channel data is written into the data memory buffers during frame n will be read out during frame $n+2$. In the IDT72V70810, the minimum throughput delay achievable in the constant delay mode will be one frame. See Table 2 for possible delays in constant delay mode.

## MICROPROCESSOR INTERFACE

The IDT72V70810 provides a parallel microprocessor interface for multiplexed or non-multiplexed bus structures. This interface is compatible with Motorola non-multiplexed and multiplexed buses.

If the IM pin is low a Motorola non-multiplexed bus should be connected to the device. If the IM pin is high, the device monitors the AS/ALE and DS/ $\overline{\mathrm{RD}}$ to determine what mode the IDT72V70810 should operate in.

If $D S / \overline{R D}$ is low at the rising edge of $A S / A L E$, then the mode 1 multiplexed timing is selected. If $D S / \overline{R D}$ is high at the rising edge of $A S / A L E$, then the mode 2 multiplexed bus timing is selected.

For multiplexed operation, the required signals are the 8-bit data and address (AD0-AD7), 8-bit Data (D8-D15), Address strobe/Address latch enable (AS/ ALE), Data strobe/Read (DS/RD), Read/Write Mrite (R/吕/ $\overline{\mathrm{WR}}$ ), Chip select $(\overline{\mathrm{CS}})$ and Data transfer acknowledge ( $\overline{\mathrm{DTA}})$. See Figure 12 and Figure 13 for multiplexed parallel microport timing.

For the Motorola non-multiplexed bus, the required signals are the 16-bit data bus (AD0-AD7, D8-D15), 8-bit address bus (A0-A7) and 4 control lines ( $\overline{\mathrm{CS}}, \mathrm{DS}, \mathrm{R} / \overline{\mathrm{W}}$ and $\overline{\mathrm{DTA}}$ ). See Figure 14 and 15 for Motorola non-multiplexed microport timing.

The IDT72V70810 microport provides access to the internal registers, connection and data memories. All locations provide read/write access except for the data memory and the frame alignment register which are read only.

## MEMORY MAPPING

The address bus on the microprocessor interface selects the internal registers and memories of the IDT72V70810.

If the A7 address input is low, then A6 through A0 are used to address the interface mode selection (IMS), control (CR), frame alignment(FAR) and frame input offset (FOR) registers (Table 4). If the A7 is high, then A6 through A0 are
used to select 128 locations corresponding to data rate of the ST-BUS ${ }^{\circledR}$. The address input lines and the stream address bits (STA) of the control register allow access to the entire data and connection memories. The control and IMS registers together control all the major functions of the device, see Figure 3.

As explained in the Serial Data Interface Timing and Switching Configurations sections, after system power-up, the IMS register should be programmed immediately to establish the desired switching configuration.

The data in the control register consists of the memory block programming bit (MBP), the memory select bit (MS) and the stream address bits (STA). As explained in the Memory Block Programming section, the MBP bit allows the entire connection memory block to be programmed. The memory select bit is used to designate the connection memory or the data Memory. The stream address bits select internal memory subsections corresponding to input or output serial streams.

The data in the IMS register consists of block programming bits (BPDOBPD4), block programming enable bit (BPE), output stand by bit (OSB) and start frame evaluation bit (SFE). The block programming and the block programming enable bits allows users to program the entire connection memory (see Memory Block Programming section). If the ODE pin is low, the OSB bit enables (if high) or disables (if low) all ST-BUS ${ }^{\circledR}$ output drivers. If the ODE pin is high, the contents of the OSB bit is ignored and all TX output drivers are enabled.

## CONNECTION MEMORY CONTROL

The CCO pin is a $16.384 \mathrm{Mb} / \mathrm{s}$ output, which carries 2,048 bits. The contents of the CCO bit of each connection memory location are output on the CCO pin once every frame. The contents of the CCO bits of the connection memory are transmitted sequentially on to the CCO pin (2 bit cells for each bit
in connection memory) and are synchronous with the data rates on the other serial streams. The CCO bit is output one channel before the corresponding channel on the serial streams.

If the ODE pin or the OSB bit is high, the OE bit of each connection memory location controls the output drivers-enables (if high) or disables (if low). See Table 4 for detail.

The processor channel (PC) bit of the connection memory selects between Processor Mode and Connection Mode. If high, the contents of the connection memory are output on the TX streams. If low, the stream address bit (SAB) and the channel address bit (CAB) of the connection memory defines the source information (stream and channel) of the time-slot that will be switched to the output from data memory.

The $\overline{\mathrm{V}} / \mathrm{C}$ (Variable/Constant Delay) bitin each connection memory location allows the per-channel selection between variable and constant throughput delay modes.

If the LPBK bit is high, the associated TX output channel data is internally looped back to the RX input channel (i.e., RX $n$ channel $m$ data comes from the TX $n$ channel $m$ ). If the LPBK bit is low, the loopback feature is disabled. For proper per-channel loopback operation, the contents of the frame delay offset registers must be set to zero.

## INITIALIZATION OF THE IDT72V70810

After power up, the state of the connection memory is unknown. As such, the outputs should be put in high impedance by holding the ODE low. While the ODE is low, the microprocessor can initialize the device, program the active paths, and disable unused outputs by programming the OE bit in connection memory. Once the device is configured, the ODE pin (or OSB bit depending on initialization) can be switched.


Figure 3. Addressing Internal Memories

TABLE 1 - VARIABLE THROUGHPUT DELAY VALUE

| Input Rate | Delay for Variable Throughput Delay Mode <br> $(m-$ output channel number) <br> $(n-$ input channel number) |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{m}<\mathrm{n}$ | $\mathrm{m}=\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2$ | $\mathrm{~m}>\mathrm{n}+2$ |
|  | $128-(\mathrm{n}-\mathrm{m})$ time-slots | $\mathrm{m}-\mathrm{n}+128$ time-slots | $\mathrm{m}-\mathrm{n}$ time-slots |

TABLE 2 - CONSTANT THROUGHPUT DELAY VALUE

| Input Rate | Delay for Constant Throughput Delay Mode <br> $(\mathrm{m}-$ output channel number) <br> $(\mathrm{n}-$ input channel number) |
| :---: | :---: |
| $8.192 \mathrm{Mb} / \mathrm{s}$ | $128+(128-\mathrm{n})+\mathrm{m}$ time-slots |

TABLE 3 - INTERNAL REGISTER AND ADDRESS MEMORY MAPPING

| A7 $^{(1)}$ | A6 | A5 | A4 | A3 | A2 | A1 | A0 | Location |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Control Register, CR |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Interface Mode Selection Register, IMS |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Frame Alignment Register, FAR |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | Frame Input Offset Register 0, FOR0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | Frame Input Offset Register 1, FOR1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ch0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Ch1 |
| 1 | 0 | 0 | . | . | . | . | . | . |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | Ch30 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | Ch31 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | Ch32 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | Ch33 |
| 1 | 0 | 1 | . | . | . | . | . | . |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | Ch62 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | Ch63 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Ch64 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | Ch65 |
| 1 | 1 | 0 | . | . | . | . | . | . |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | Ch126 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Ch127 |

NOTE:

1. Bit A 7 must be high for access to data and connection memory positions. Bit A 7 must be low for access to registers.

## TABLE 4 - OUTPUT HIGH IMPEDANCE CONTROL

| OE bit in Connection <br> Memory | ODE pin | OSB bit in IMS <br> Register | TX Output Driver <br> Status |
| :---: | :---: | :---: | :---: |
| 0 | Don't Care | Don't Care <br> High-Impedance | Per Channel |
| 1 | 0 | 0 | High-Impedance |
| 1 | 0 | 1 | Enable |
| 1 | 1 | 1 | Enable |
| 1 | 1 | 0 | Enable |

## TABLE 5 - CONTROL REGISTER (CR) BITS



## TABLE 6 - INTERFACE MODE SELECTION (IMS) REGISTER BITS



## TABLE 7 - FRAME ALIGNMENT REGISTER (FAR) BITS



(FD[10:0] $=06 \mathrm{H}$ )
(FD11 $=0$, sample at CLK LOW phase)


Figure 4. Example for Frame Alignment Measurement

## TABLE 8 - FRAME INPUT OFFSET REGISTER (FOR) BITS



## NOTE:

1. $n$ denotes an input stream number from 0 to 7 .

TABLE 9 - OFFSET BITS (OFN2, OFN1, OFN0, DLEN) \& FRAME DELAY BITS (FD11, FD2-0)

| Input Stream <br> Offset | Measurement Result from <br> Frame Delay Bits |  |  |  |  | Corresponding <br> Offset Bits |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | FD11 | FD2 | FD1 | FD0 | OFn2 | OFn1 | OFn0 | DLEn |  |
| No clock period shift (Default) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| + 0.5 clock period shift | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |
| + 1.0 clock period shift | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |  |
| +1.5 clock period shift | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |  |
| +2.0 clock period shift | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |  |
| +2.5 clock period shift | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |  |
| +3.0 clock period shift | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |  |
| +3.5 clock period shift | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |  |
| +4.0 clock period shift | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |  |
| +4.5 clock period shift | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |  |




Figure 5. Examples for Input Offset Delay Timing

## TABLE 10-GONNEGTION MEMORY BITS



| Bit | Name |  |
| :---: | :--- | :--- |
| 15 | LPBK <br> (Per Channel Loopback) | When 1, the RX $n$ channel $m$ data comes from the TX $n$ channel $m$. For proper per channel loopback opera- <br> tions, set the delay offset register bits OFn[2:0] to zero for the streams which are in the loopback mode. |
| 14 | $\bar{V} / C$ <br> (Variable/Constant Throughput Delay) | This bit is used to select between the variable (LOW) and constant delay (HIGH) mode on a per-channel basis. |
| 13 | PC <br> (Processor Channel) | When 1, the contents of the connection memory are output on the corresponding output channel and stream. <br> Only the lower byte (bit 7 - bit 0) will be output to the TX output pins. When 0, the contents of the connection <br> memory are the data memory address of the switched input channel and stream. |
| 12 | CCO <br> (Control Channel Output) | This bit is output on the CCO pin one channel early. The CCO bit for stream 0 is output first. <br> 11OE <br> (Output Enable) |
| 10 | Unused | This bit enables the TX output drivers on a per-channel basis. When 1, the output driver functions normally. <br> When 0, the output driver is in a high-impedance state. |
| $9,8,7^{(1)}$ | SAB2-0 <br> (Source Stream Address Bits) | Must be zero for normal operation. |
| $6-0^{(1)}$ | CAB6-0 | The binary value is the number of the data stream for the source of the connection. |
|  | (Source Channel Address Bits) | The binary value is the number of the channel for the source of the connection. |

## NOTE:

1. If bit $13(\mathrm{PC})$ of the corresponding connection memory location is 1 (device in processor mode), then these entire 8 bits (SABO, CAB6-CABO) are output on the output channel and stream associated with this location.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

| Symbol | Parameter | Min. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: |
| Vcc | Supply Voltage | -0.3 | 5.0 | V |
| Vi | Voltage on Digital Inputs | GND -0.3 | 5.5 | V |
| Io | Current at Digital Outputs |  | 20 | mA |
| Ts | Storage Temperature | -65 | +125 | ${ }^{\circ} \mathrm{C}$ |
| PD | Package Power Dissapation | - | 1 | W |

NOTE:

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

RECOMMENDED DC OPERATING CONDITIONS

| Symbol | Parameter | Min. | Typ. | Max. | Units |
| :---: | :--- | :---: | :---: | :---: | :---: |
| Vcc | Positive Supply | 3.0 | - | 3.6 | V |
| VIH | Input HIGH Voltage | 2.0 | - | Vcc | V |
| VIL | Input LOW Voltage | GND | - | 0.8 | V |
| Top | Operating Temperature <br> Commercial | -40 | - | +85 | ${ }^{\circ} \mathrm{C}$ |

NOTE:

1. Voltages are with respect to ground unless other wise stated.

## DC ELECTRICAL CHARACTERISTICS

| Symbol | Characteristics | Min. | Typ. | Max. | Units |
| :---: | :--- | :---: | :---: | :---: | :---: |
| ICc $^{(1)}$ | Supply Current | - | 30 | 45 | mA |
| ILL | Input Leakage (input pins) | - | - | $15 \mu \mathrm{~A}$ |  |
| IBL | Input Leakage (I/O pins) | - | - | 50 | $\mu \mathrm{~A}$ |
| CI | Input Pin Capacitance | - | - | 10 | pF |
| IOZ | High-impedance Leakage |  | - | - | 5 A |
| VOH | Output HIGH Voltage | 2.4 | - | - | V |
| VoL | Output LOW Voltage | - | - | 0.4 | V |
| Co | Output Pin Capacitance | - | - | 10 | pF |

NOTE:

1. Outputs Unloaded.

S1 is open circuitexcept when testing output levels or high impedance states.
S 2 is switched to Vcc or GND when testing output levels or high impedance states.


Figure 6. Output Load

## AC ELECTRICAL CHARACTERISTICS - FRAME PULSE AND CLK

| Symbol | Characteristics | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| tFPW | Frame Pulse Width (ST-BUS ${ }^{\circledR}$, GCI) - Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ | 26 | - | 80 | ns |
| tFPS | Frame Pulse Setup time before CLK falling (ST-BUS® or GCI) | 5 | - | - | ns |
| tFPH | Frame Pulse Hold Time from CLK falling (ST-BUS® or GCl) | 10 | - | - | ns |
| tCP | CLK Period - Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ | 55 | - | 70 | ns |
| tch | CLK Pulse Width HIGH - Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ | 20 |  | 40 | ns |
| tCL | CLK Pulse Width LOW - Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ | 20 | - | 40 | ns |
| tr, tf | Clock Rise/Fall Time | - | - | 10 | ns |
| thFPW | Wide Frame Pulse Width — Bit rate = 8.192 Mb/s | 195 | - | 295 | ns |
| tHFPS | Frame Pulse Setup Time before HCLK falling | 5 | - | 150 | ns |
| tHFPH | Frame Pulse Hold Time from HCLK falling | 10 | - | 150 | ns |
| tHCP | HCLK (4.096 MHz) Period - Bit rate $=8.192 \mathrm{Mb} / \mathrm{s}$ | 190 | - | 300 | ns |
| thCH | HCLK (4.096 MHz) Pulse Width HIGH - Bit rate = 8.192 Mb/s | 85 | - | 150 | ns |
| thCL | HCLK (4.096 MHz) Pulse Width LOW - Bit rate = 8.192 Mb/s | 85 | - | 150 | ns |
| tHr, thf | HCLK Rise/Fall Time | - | - | 10 | ns |
| tDIF | Delay between falling edge of HCLK and falling edge of CLK | -10 | - | 10 | ns |

## AC ELECTRICAL CHARACTERISTICS - SERIAL STREAMS ${ }^{(1)}$

| Symbol | Characteristics | Min. | Typ. | Max. | Unit | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tsis | RX Setup Time | 0 | - | - | ns |  |
| tsit | RX Hold Time | 10 | - | - | ns |  |
| tsod | TX Delay - Active to Active | — | — | $\begin{aligned} & 30 \\ & 40 \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ | $\begin{gathered} C_{L}=30 \mathrm{pF} \\ C_{L}=200 \mathrm{pF} \end{gathered}$ |
| tDz | TX Delay - Active to High-Z | - | - | 32 | ns | $\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=200 \mathrm{pF}$ |
| tzD | TX Delay - High-Z to Active | - | - | 32 | ns | $\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=200 \mathrm{pF}$ |
| tode | Output Driver Enable (ODE) Delay | - | - | 32 | ns | $\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=200 \mathrm{pF}$ |
| tXCD | CCO Output Delay | — | — | $\begin{aligned} & 30 \\ & 40 \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \text { ns } \end{aligned}$ | $\begin{gathered} C L=30 \mathrm{pF} \\ C_{L}=200 \mathrm{pF} \end{gathered}$ |

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge CL.


NOTE:

1. last channel $=\operatorname{ch} 127$.

Figure 7. ST-BUS ${ }^{\circledR}$ Timing when WFPS pin $=0$.


NOTE:

1. last channel $=$ ch 127 .

Figure 8. GCI Timing when WFPS pin $=0$


NOTE:

1. High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge CL.

Figure 9. WFP Bus Timing for High Speed Serial Interface (8.192 Mb/s), when WFPS pin =1


Figure 10. Serial Output and External Control


Figure 11. Output Driver Enable (ODE)

## AC ELECTRICAL CHARACTERISTICS - MULTIPLEXED BUS TIMING (INTEL)

| Symbol | Parameter | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| taLw | ALE Pulse Width | 20 |  |  | ns |  |
| tADS | Address Setup from ALE falling | 3 |  |  | ns |  |
| tadH | Address Hold from ALE falling | 3 |  |  | ns |  |
| tALRD | RD Active after ALE falling | 3 |  |  | ns |  |
| tDDR | Data Setup from $\overline{\text { DTA }}$ LOW on Read | 5 |  |  | ns | $\mathrm{CL}=150 \mathrm{pF}$ |
| tCSRW | $\overline{\mathrm{CS}}$ Hold after $\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ | 5 |  |  | ns |  |
| tRW | $\overline{\mathrm{RD}}$ Pulse Width (Fast Read) | 45 |  |  | ns |  |
| tCSR | $\overline{\mathrm{CS}}$ Setup from $\overline{\mathrm{RD}}$ | 0 |  |  | ns |  |
| tDHR ${ }^{(1)}$ | Data Hold after $\overline{R D}$ | 10 |  | 20 | ns | $C_{L}=150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$ |
| tww | WR Pulse Width (Fast Write) | 45 |  |  | ns |  |
| tALWR | WR Delay after ALE falling | 3 |  |  | ns |  |
| tCSW | $\overline{\mathrm{CS}}$ Setup from $\overline{\mathrm{WR}}$ | 0 |  |  | ns |  |
| tDSW | Data Setup from $\overline{\mathrm{WR}}$ (Fast Write) | 20 |  |  | ns |  |
| tswD | Valid Data Delay on Write (Slow Write) |  |  | 122 | ns |  |
| tDHW | Data Hold after $\overline{\mathrm{WR}}$ Inactive | 5 |  |  | ns |  |
| tAKD | Acknowledgment Delay: <br> Reading/Writing Registers <br> Reading/Writing Memory |  |  | $\begin{gathered} 43 / 43 \\ 220 / 210 \end{gathered}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ | $\begin{aligned} & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \end{aligned}$ |
| tАКН ${ }^{(1)}$ | Acknowledgment Hold Time |  |  | 22 | ns | $\mathrm{CL}_{\text {L }} 150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$ |

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with RL , with timing corrected to cancel time taken to discharge CL .


Figure 12. Multiplexed Bus Timing (Intel Mode)

AC ELECTRICAL CHARACTERISTICS-MULTIPLEXED BUSTIMING (MOTOROLA)

| Symbol | Parameter | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tASW | ALE Pulse Width | 20 |  |  | ns |  |
| tads | Address Setup from AS falling | 3 |  |  | ns |  |
| tADH | Address Hold from AS falling | 3 |  |  | ns |  |
| tDDR | Data Setup from $\overline{\text { DTA }}$ LOW on Read | 5 |  |  | ns | $C_{L}=150 \mathrm{pF}$ |
| tCSH | $\overline{\text { CS }}$ Hold after DS falling | 0 |  |  | ns |  |
| tcss | $\overline{\text { CS Setup from DS rising }}$ | 0 |  |  | ns |  |
| tDHw | Data Hold after Write | 5 |  |  | ns |  |
| tDws | Data Setup from DS - Write (Fast Write) | 20 |  |  | ns |  |
| tswD | Valid Data Delay on Write (Slow Write) |  |  | 122 | ns |  |
| tRWS | R/W Setup from DS Rising | 60 |  |  | ns |  |
| trwh | R/VW Hold from DS Rising | 5 |  |  | ns |  |
| tDHR ${ }^{(1)}$ | Data Hold after Read | 10 |  | 20 | ns | $C_{L}=150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$ |
| tDSH | DS Delay after AS falling | 10 |  |  | ns |  |
| takD | Acknowledgment Delay: <br> Reading/Writing Registers <br> Reading/Writing Memory |  |  | $\begin{gathered} 43 / 43 \\ 220 / 210 \end{gathered}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ | $\begin{aligned} & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \end{aligned}$ |
| tАКН ${ }^{(1)}$ | Acknowledgment Hold Time |  |  | 22 | ns | $\mathrm{CL}=150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$ |

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with RL , with timing corrected to cancel time taken to discharge CL .


Figure 13. Multiplexed Bus Timing (Motorola Mode)

## ACELECTRICALCHARACTERISTICS-MOTOROLA NON-MULTIPLEXEDBUSMODE

| Symbol | Parameter | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tcss | CS Setup from DS falling | 0 |  |  | ns |  |
| trWS | R/W Setup from DS falling | 10 |  |  | ns |  |
| tADS | Address Setup from DS falling | 2 |  |  | ns |  |
| tCSH | CS Hold after DS rising | 0 |  |  | ns |  |
| trWH | R/W Hold after DS Rising | 2 |  |  | ns |  |
| tADH | Address Hold after DS Rising | 2 |  |  | ns |  |
| tDDR | Data Setup from DTA LOW on Read | 2 |  |  | ns | $\mathrm{CL}=150 \mathrm{pF}$ |
| tDHR | Data Hold on Read | 10 |  | 20 | ns | $C \mathrm{~L}=150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$ |
| tDSW | Data Setup on Write (Fast Write) | 5 | - |  | ns |  |
| tswD | Valid Data Delay on Write (Slow Write) |  |  | 122 | ns |  |
| tDHW | Data Hold on Write | 5 |  |  | ns |  |
| takd | Acknowledgment Delay: <br> Reading/Writing Registers <br> Reading/Writing Memory |  |  | $\begin{gathered} 43 / 43 \\ 220 / 210 \end{gathered}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ | $\begin{aligned} & C L=150 \mathrm{pF} \\ & C L=150 \mathrm{pF} \end{aligned}$ |
| tAKH ${ }^{(1)}$ | Acknowledgment Hold Time |  |  | 22 | ns | $\mathrm{CLL}^{\text {= }} 150 \mathrm{pF}, \mathrm{RL}=1 \mathrm{~K}$ |

NOTE:

1. High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge CL.


Figure 14. Motorola Non-Multiplexed Asyncronous Bus Timing


Figure 15. Motorola Non-Multiplexed Syncronous Bus Timing

## ORDERING INFORMATION



## DATA SHEET DOCUMENT HISTORY

5/02/2000
1/04/2001
1/25/2001
08/06/2001
03/24/2003
12/07/2004

09/29/14
pg. 1
pgs. 4, 5, 10, 11, 14, 17, 19 and 20.
pgs. 14 and 20.
pg. 1
pg. 1
pgs. 4 and 7.
PF \& TF packages Product discontinuation notice - Last time buy expires October 28, 2014 CQ-13-01.
Replacement packages - Green - 72V70810PFG and 72V70810TFG
Updated Datasheet format
Updated Technical Support email address
pg 22 Ordering information - updated from leaded to green parts

Renesas

## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

## Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

## Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

## Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH400ZBEX PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 TC7WBL3305CFK,LF SN74CBT16245CDGGR PI5C3245QE 72V90823PQFG PI3B3861QEX PI3C3126QEX PI3C3245QE PI5C3384QE PI3CH281QE QS3VH16244PAG8 PI3CH400LE PI3B3245LEX PI3B3245LE PI3C3306LEX PI5C3245LEX PI5C3306LEX PI3B3126LE PI3B3125LEX 72V73273BBG 74CBTLV3384PGG 74CBTLV3862PGG QS3126QG QS32245QG QS3244QG QS3245SOG8

