

3.3 VOLT TIME SLOT INTERCHANGE DIGITAL SWITCH 128 x 128

IDT72V8981

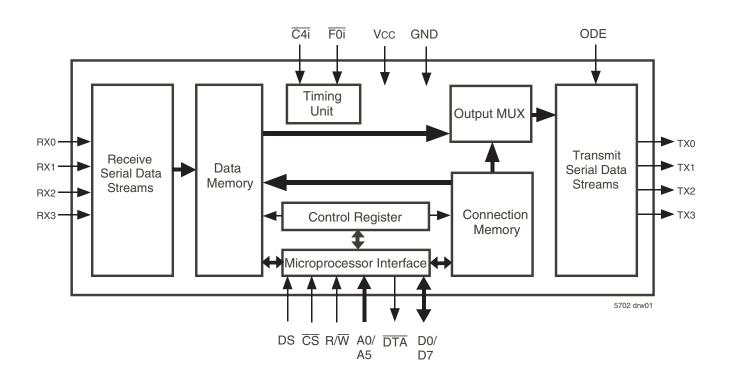
FEATURES:

- 128 x 128 channel non-blocking switch
- Serial Telecom Bus Compatible (ST-BUS®)
- 4 RX inputs—32 channels at 64 Kbit/s per serial line
- 4 TX output—32 channels at 64 Kbit/s per serial line
- · Three-state serial outputs
- Microprocessor Interface (8-bit data bus)
- 3.3V Power Supply
- Available in 44-pin Plastic Leaded Chip Carrier (PLCC), and 44-pin Plastic Quad Flatpack (PQFP)
- Operating Temperature Range -40°C to +85°C
- 3.3V I/O with 5V Tolerant Inputs

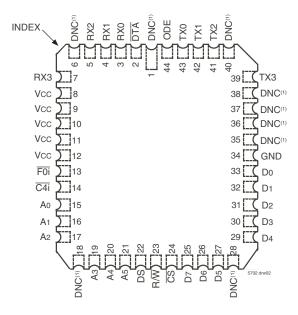
DESCRIPTION:

The IDT72V8981 is a ST-BUS® compatible digital switch controlled by a microprocessor. The IDT72V8981 can handle as many as 128, 64 Kbit/s input and output channels. Those 128 channels are divided into 4 serial inputs and

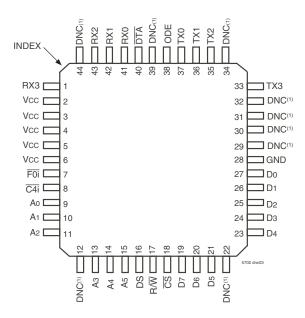
outputs, each of which consists of 32 channels (64 Kbit/s per channel) to form a multiplexed 2.048 Mb/s stream.


FUNCTIONAL DESCRIPTION

A functional block diagram of the IDT72V8981 device is shown below. The serial streams operate continuously at 2.048 Mb/s and are arranged in 125 μs wide frames each containing 32, 8-bit channels. Four input (RX0-3) and four output (TX0-3) serial streams are provided in the IDT72V8981 device allowing a complete 128 x 128 channel non-blocking switch matrix to be constructed. The serial interface clock ($\overline{\text{C4i}}$) for the device is 4.096 MHz.


The received serial data is internally converted to a parallel format by the on chip serial-to-parallel converters and stored sequentially in a 128-position Data Memory. By using an internal counter that is reset by the input 8 KHz frame pulse, $\overline{\text{F0i}}$, the incoming serial data streams can be framed and sequentially addressed.

Data to be output on the serial streams may come from two sources: Data Memory or Connection Memory. The Connection Memory is 16 bits wide and


FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

PLCC: 0.05in. pitch, 0.65in. x 0.65in. (J44-1, order code: J)
TOP VIEW

PQFP: 0.80mm pitch, 10mm x 10mm (DB44-1, order code: DB) TOP VIEW

NOTE:

1. DNC - Do Not Connect

PIN DESCRIPTIONS

SYMBOL	NAME	I/O	DESCRIPTION
GND	Ground.		Ground Rail.
Vcc	Vcc		+3.3 Volt Power Supply.
DTA	Data Acknowledgment (Open Drain)	0	This active LOW output indicates that a data bus transfer is complete. A pull-up resistor is required at this output.
RX0-3	RX Input 0 to 3	Ι	Serial data input streams. These streams have 32 channels at data rates of 2.048 Mb/s.
F0i	Frame Pulse	Ι	This input identifies frame synchronization signals formatted to ST-BUS® specifications.
C4i	Clock	1	4.096 MHz serial clock for shifting data in and out of the data streams.
A0-A5	Address 0 to 5	Π	These lines provide the address to IDT72V8981 internal registers.
DS	Data Strobe	I	This is the input for the active HIGH data strobe on the microprocessor interface. This input operates with $\overline{\text{CS}}$ to enable the internal read and write generation.
R/W	Read/Write	Ι	This input controls the direction of the data bus lines (D0-D7) during a microprocessor access.
CS	Chip Select	Ι	Active LOW input enabling a microprocessor read or write of control register or internal memories.
D0-D7	Data Bus 0 to 7	I/O	These pins provide microprocessor access to data in the internal control register. Connection Memory HIGH, Connection Memory LOW and data memory.
TX0-3	TX Outputs 0 to 3 (Three-state Outputs)	0	Serial data output streams. These streams are composed of 32, 64 Kbit/s channels at data rates of 2.048 Mb/s.
ODE	Output Drive Enable	ı	This is an output enable for the TX0-3 serial outputs. If this input is LOW, TX0-3 are high-impedance. If this is HIGH, each channel may still be put into high-impedance by software control.

FUNCTIONAL DESCRIPTION (Cont'd)

is split into two 8-bit blocks—Connection Memory HIGH and Connection Memory LOW. Each location in Connection Memory is associated with a particular channel in an output stream so as to provide a one-to-one correspondence between Connection and Data Memories. This correspondence allows for per channel control for each TX output stream.

In Processor Mode, data output on the TX is taken from the Connection Memory Low and originates from the microprocessor (Figure 2). Where as in Connection Mode (Figure 1), data is read from Data Memory using the address in Connection Memory. Data destined for a particular channel on the serial output stream is read during the previous channel time slot to allow time for memory access and internal parallel-to-serial conversion.

CONNECTION MODE

In Connection Mode, the addresses of input source for all output channels are stored in the Connection Memory Low. The Connection Memory Low locations are mapped to corresponding 8-bit x 32-channel output. The contents of the Data Memory at the selected address are then transferred to the parallel-to-serial converters. By having the output channel to specify the input channel through the Connection Memory, input channels can be broadcast to several output channels.

PROCESSOR MODE

In Processor Mode the CPU writes data to specific Connection Memory Low locations which are to be output on the TX streams. The contents of the Connection Memory Low are transferred to the parallel-to-serial converter one channel before it is to be output and are transmitted each frame to the output until it is changed by the CPU.

CONTROL

The Connection Memory High bits (Table 4) control the per-channel functions available in the IDT72V8981. Output channels are selected into specific modes such as: Processor mode or Connection mode and Output Drivers Enabled or in three-state condition.

OUTPUT DRIVE ENABLE (ODE)

The ODE pin is the master three-state output control pin. If the ODE input is held LOW all TX outputs will be placed in high impedance regardless Connection Memory High programming. However, if ODE is HIGH, the contents of Connection Memory High control the output state on a per-channel basis.

DELAY THROUGH THE IDT72V8981

The transfer of information from the input serial streams to the output serial streams results in a delay through the device. The delay through the IDT72V8981 device varies according to the combination of input and output streams and the movement within the stream from channel to channel. Data received on an input stream must first be stored in Data Memory before it is sent out.

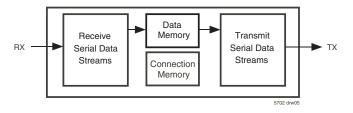


Figure 1. Connection Mode

As information enters the IDT72V8981 it must first pass through an internal serial-to-parallel converter. Likewise, before data leaves the device, it must pass through the internal parallel-to-serial converter. This data preparation has an effect on the channel positioning in the frame immediately following the incoming frame—mainly, data cannot leave in the same time slot. Therefore, information that is to be output in the same channel position as the information is input, relative to the frame pulse, will be output in the following frame.

Whether information can be output during a following timeslot after the information entered the IDT72V8981 depends on which RX stream the channel information enters on and which TX stream the information leaves on. This is caused by the order in which input stream information is placed into Data Memory and the order in which stream information is queued for output. Table 1 shows the allowable input/output stream combinations for the minimum two channel delay.

SOFTWARE CONTROL

If the A5 address line input is LOW then the IDT72V8981 Internal Control Register is addressed. If A5 input line is high, then the remaining address input lines are used to select the 32 possible channels per input or output stream. The address input lines and the Stream Address bits (STA) of the Control register give the user the capability of selecting all positions of IDT72V8981 Data and Connection memories. The IDT72V8981 memory mapping is illustrated in Table 2 and Figure 3.

The data in the control register (Table 3) consists of Memory Select and Stream Address bits, Split Memory and Processor Mode bits. In Split Memory mode (Bit 7 of the Control register) reads are from the Data Memory and writes are to the Connection Memory as specified by the Memory Select Bits (Bits 4 and 3 of the Control Register). The Memory Select bits allow the Connection Memory HIGH or LOW or the Data Memory to be chosen, and the Stream Address bits define internal memory subsections corresponding to input or output streams.

The Processor Enable bit (bit 6) places EVERY output channel on every output stream in Processor mode; i.e., the contents of the Connection Memory LOW (CML, see Table 5) are output on the TX output streams once every frame unless the ODE input pin is LOW. If PE bit is HIGH, then the IDT72V8981 behaves as if bits 2 (Channel Source) and 0 (Output Enable) of every Connection Memory High (CMH) locations were set to HIGH, regardless of the actual value. If PE is LOW, then bit 2 and 0 of each Connection Memory High location operates normally. In this case, if bit 2 of the CMH is HIGH, the associated TX output channel is in Processor Mode. If bit 2 of the CMH is LOW, then the contents of the CML define the source information (stream and channel) of the time slot that is to be switched to an output.

If the ODE input pin is LOW, then all the serial outputs are high-impedance. If ODE is HIGH, then bit 0 (Output Enable) of the CMH location enables (if HIGH) or disables (if LOW) the output stream and channel.

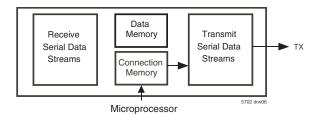


Figure 2. Processor Mode

INITIALIZATION OF THE IDT72V8981

On initialization or power up, the contents of the Connection Memory High can be in any state. This is a potentially hazardous condition when multiple TX outputs are tied together to form matrices. The ODE pin should be held low on power up to keep all outputs in the high impedance condition until the contents of the CMH are programmed.

During the microprocessor initialization routine, the microprocessor should program the desired active paths through the matrices, and put all other channels into the high impedance state. Care should be taken that no two connected TX outputs drive the bus simultaneously. With the CMH setup, the microprocessor controlling the matrices can bring the ODE signal high to relinquish high impedance state control to the Connection Memory High bits outputs.

TABLE 1 — INPUT STREAM TO OUT- TABLE 2 — ADDRESS MAPPING **PUT STREAM COMBINATIONS THAT** PROVIDE THE MINIMUM 2-CHANNEL DELAY

Input	Output Stream
0	1,2,3
1	3

A 5	A 4	A 3	A2	A1	A0	HEX ADDRESS	LOCATION
0	Χ	Χ	Χ	0	0	00-1F	Control Register ⁽¹⁾
1	0	0	0	0	0	20	Channel 0 ⁽²⁾
1	0	0	0	0	1	21	Channel 1 ⁽²⁾
1	•	•	•	•	•	•	•
1	٠	٠	٠	٠	•	•	•
1	•	•	•	•	•	•	•
1	1	1	1	1	1	3F	Channel 31 ⁽²⁾

- 1. Writing to the Control Register is the only fast transaction.
- 2. Memory and stream are specified by the contents of the Control Register.

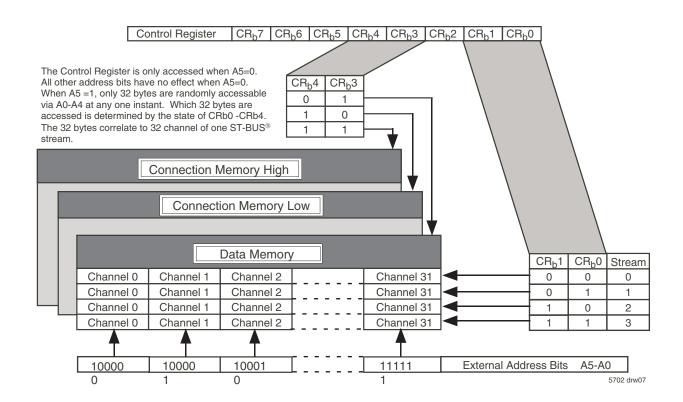


Figure 3. Address Mapping

TABLE 3 — CONTROL REGISTER CONFIGURATION

		Mode Control Memory Select Stream Address Bits (unused) Bits 7 6 5 4 3 2 1 0					
Bit	Name	Description					
7	SM (Split Memory)	·					
6	PE (Processor Mode)	When 1, the contents of the Connection Memory LOW are output on the Serial Output streams except when the ODE pin is LOW. When 0, the Connection Memory bits for each channel determine what is output.					
5		unused					
4-3	MS1-MS0 (Memory Select Bits)	0-0 - Not to be used. 0-1 - Data Memory (read only from the microprocessor port) 1-0 - Connection Memory LOW 1-1 - Connection Memory is HIGH					
2		unused					
1-0	STA1-0 (Stream Address Bits)	The number expressed in binary notation on these bits refers to the input or output stream which corresponds to the subsection of memory made accessible for subsequent operations.					

TABLE 4 — CONNECTION MEMORY HIGH REGISTER

	No Corresponding Memory - These bits give 0s if read CS (unused) OE								1	
7 6 5 4 3 2 1						0				
Bit	Bit Name Description									
2	2.00									
1		unused								
0	OE (Output Enable)	put Enable) If the ODE pin is HIGH and bit 6 of the Control Register is 0, then this bit enables the output driver for the location's channel and stream. This allows individuals channels on individuals streams to be made high-impedance, allowing switching matrices to be constructed. A 1 enables the driver and a 0 disables it.								

TABLE 5 — CONNECTION MEMORY LOW REGISTER

		(unused)	Stream Address (unused) Bits Channel Address Bits							
7 6 5 4 3 2 1 0										
Bit	Bit Name Description									
7		unused								
6-5 ⁽¹⁾	Stream Address Bits									eam for the source of the connection. onnection is a channel on RX2.
4-0 ⁽¹⁾										

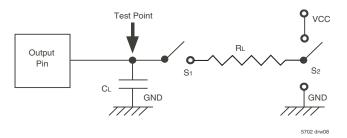
^{1.} If bit 2 of the corresponding Connection HIGH location is 1 or bit 6 of the Control Register is 1, then these entire 8 bits are output on the channel and stream associated with this location. Otherwise, the bits are used as indicated to define the source of the connection which is output on the channel and stream associated with this location.

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Min.	Max.	Unit
Vcc	Symbol Voltage	-0.3	5	٧
Vi	Voltage on Digital Inputs	GND - 0.3	Vcc +0.5	٧
Vo	Voltage on Digital Outputs	GND - 0.3	Vcc +0.3	٧
lo	Current at Digital Outputs		20	mA
Ts	Storage Temperature	-55	+125	°C
Pb	Package Power Dissapation		1	W

NOTE:

RECOMMENDED OPERATING CONDITIONS


Symbol	Parameter	Min.	Typ. ⁽¹⁾	Max.	Unit
Vcc	Positive Supply	3.0		3.6	٧
Vı	Input Voltage	0		5.25	V
Тор	OperatingTemperature Commercial	-40	25	+85	°C

NOTE:

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min.	Typ. ⁽¹⁾	Max.	Units	Test Conditions
Icc	Supply Current	_	3	5	mA	Outputs Unloaded
VIH	Input High Voltage	2.0	_	_	V	
VIL	Input Low Voltage	_		0.8	V	
lıL	InputLeakage	_		15	μΑ	Vi between GND and Vcc
Сі	Input Capacitance	_		_	pF	
Voн	Output High Voltage	2.4		_	V	Iон = 10mA
Іон	Output High Current	10			mA	Sourcing. VoH = 2.4V
Vol	Output Low Voltage	_		0.4	V	IoL = 5mA
loL	Output Low Current	5		_	mA	Sinking. VoL = 0.4V
loz	High Impedance Leakage	_		5	μΑ	Vo between GND and Vcc
Со	Output Pin Capacitance	_	_	10	pF	

NOTE:

S1 is open circuit except when testing output levels or high impedance states.

S2 is switched to VCC or GND when testing output levels or high impedance states.

Figure 4. Output Load

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} Typical figures are at 25°C and are for design aid only; not guaranteed and not subject

^{1.} Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

AC ELECTRICAL CHARACTERISTICS (1)—CLOCK TIMING

Symbol	Characteristics	Min.	Typ. ⁽²⁾	Max.	Unit
tclk	Clock Period ⁽³⁾		244		ns
tch	Clock Width High		122		ns
tcL	Clock Width Low	110	122	150	ns
tctt	ClockTransitionTime		20		ns
tFPS	Frame Pulse Setup Time	5	20	190	ns
tFPH	Frame Pulse Hold Time	5	20	190	ns
tFPW	Frame Pulse Width		244	_	ns

- 1. Timing is over recommended temperature and power supply voltages.
- 2. Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.
- 3. Contents of Connection Memory are not lost if the clock stops, however, TX output go into the high impedance state.

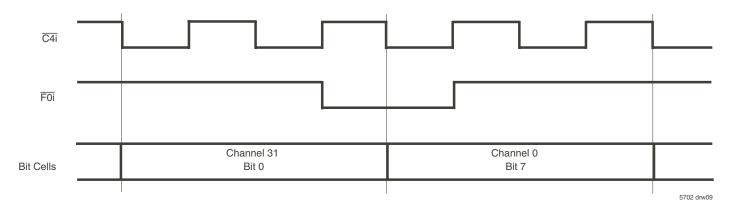


Figure 5. Frame Alignment

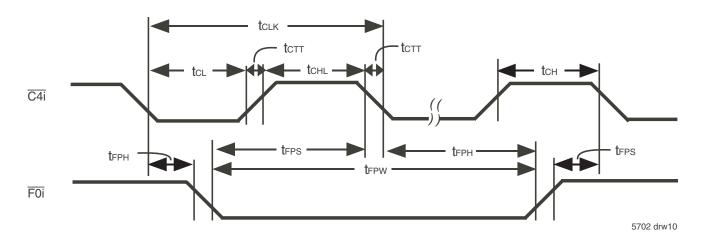


Figure 6. Clock Timing

AC ELECTRICAL CHARACTERISTICS (1)—SERIAL STREAM TIMING

Symbol	Characteristics	Min.	Typ. ⁽²⁾	Max.	Unit	Test Conditions
ttaz	TX0-3 Delay - Active to High Z	_	30	45	ns	$R_L = 1K\Omega^{(3)}, C_L = 150pF$
ttza	TX0-3 Delay - High Z to Active	_	45	60	ns	C _L = 150pF
ttaa	TX0-3 Delay - Active to Active	_	40	60	ns	C _L = 150pF
tтон	TX0-3 Hold Time	20	45	_	ns	C _L = 150pF
toed	Output Driver Enable Delay	_	45	60	ns	$R_L = 1K\Omega^{(3)}, C_L = 150pF$
tsis	Serial Input Setup Time	10	20		ns	
tsih	Serial Input Hold Time	10	20		ns	
tzdo	High Z to Valid Data	_	32		cycles	C4i cycles

- 1. Timing is over recommended temperature and power supply voltages.
- 2. Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.
- 3. High Impedance is measured by pulling to the appropriate rail with R₁, with timing corrected to cancel time taken to discharge C₁.

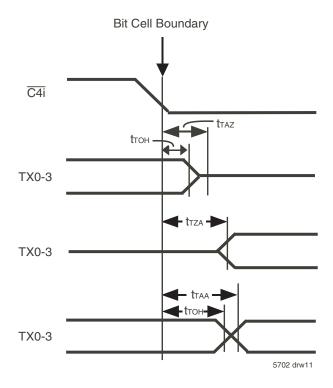


Figure 7. Serial Outputs and External Control

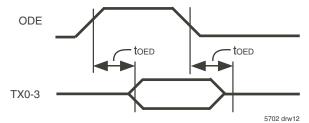


Figure 8. Output Driver Enable

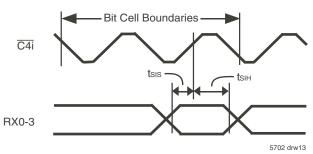


Figure 9. Serial Inputs

AC ELECTRICAL CHARACTERISTICS (1)—PROCESSOR BUS

Symbol	Characteristics	Min.	Typ. ⁽²⁾	Max.	Unit	Test Conditions
tcss	Chip Select Setup Time	0	_	_	ns	
trws	Read/Write Setup Time	5	_	_	ns	
tads	Address Setup Time	5	_	_	ns	
takd	Acknowledgment Delay Fast	_	40	60	ns	C _L = 150pF
takd	Acknowledgment Delay Slow	_	_	4.5	cycles	C4i cycles ⁽⁴⁾
trws	Fast Write Data Setup Time	10	20		ns	
tswd	Slow Write Data Delay	_	2.0	1.7	cycles	C4i cycles
trds	Read Data Setup Time	_	_	0.5	cycles	C4i cycles, C _L = 150pF
tDHT	Data Hold Time Read	20	50	75	ns	$R_L = 1K\Omega^{(3)}, C_L = 150pF$
tDHT	Data Hold Time Write	10	_	_	ns	
trdz	Read Data to High Impedance	10	50	_	ns	$R_L = 1K\Omega^{(3)}, C_L = 150pF$
tcsh	Chip Select Hold Time	0	5	_	ns	
trwh	Read/Write Hold Time	0	5		ns	
tadh	Address Hold Time	0	5		ns	
takh	Acknowledgment Hold Time	_	20	40	ns	$R_L = 1K\Omega^{(3)}, C_L = 150pF$

- 1. Timing is over recommended temperature and power supply voltages.
- 2. Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.
- 3. High Impedance is measured by pulling to the appropriate rail with R_L, with timing corrected to cancel time taken to discharge C_L.
- 4. Processor accesses are dependent on the $\overline{\text{C4i}}$ clock, and so some things are expressed as multiples of the $\overline{\text{C4i}}$.

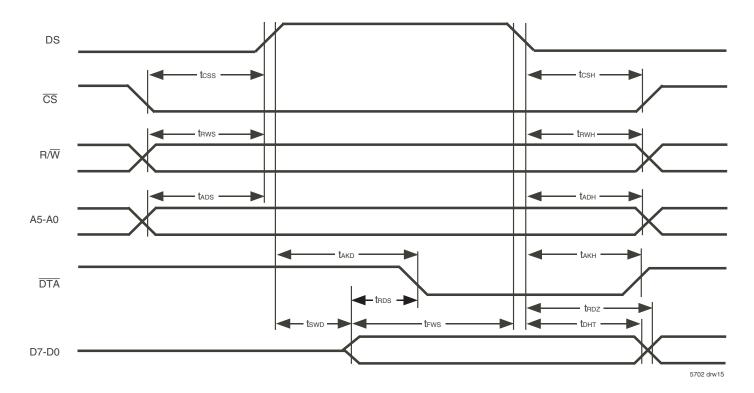
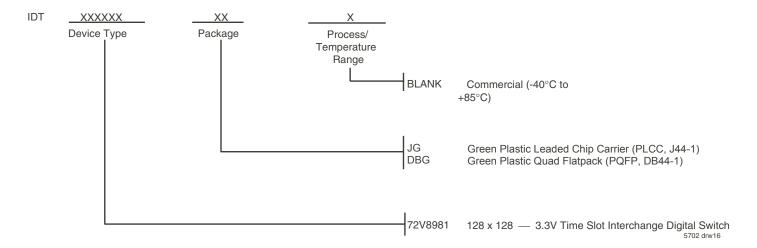



Figure 10. Processor Bus

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Bus Switch ICs category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1
PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE
PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4

TC7WBL3305CFK,LF SN74CBT16245CDGGR PI5C3245QE 72V90823PQFG PI3B3861QEX PI3C3126QEX PI3C3245QE PI5C3384QE
PI3CH281QE QS3VH16244PAG8 PI3CH400LE PI3B3245LEX PI3B3245LE PI3C3306LEX PI5C3245LEX PI5C3306LEX PI3B3126LE
PI3B3125LEX 72V73273BBG 74CBTLV3862PGG QS3126QG QS32245QG QS3244QG QS3245SOG8 QS32X384Q1G QS3VH126QG