

3.3V CMOS 16-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

IDT74ALVC162334

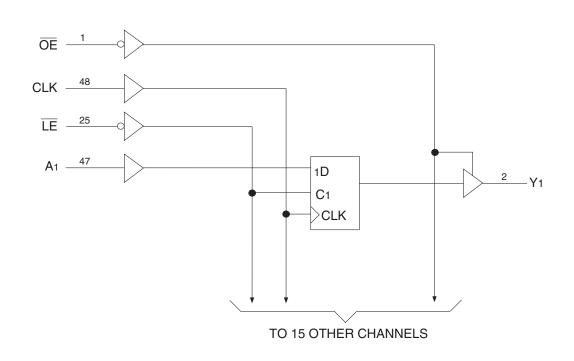
FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = $3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- VCC = $2.5V \pm 0.2V$
- CMOS power levels (0.4µ W typ. static)
- · Rail-to-Rail output swing for increased noise margin
- Available in TSSOP package

DRIVE FEATURES:

- Balanced Output Drivers: ±12mA
- · Low Switching Noise

DESCRIPTION:

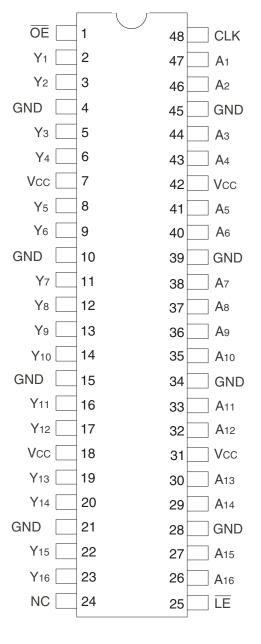

This 16-bit universal bus driver is built using advanced dual metal CMOS technology. Data flow from A to Y is controlled by the output-enable (\overline{OE}) input. The device operates in the transparent mode when the latch-enable (\overline{LE}) input is low. When \overline{LE} is high, the A data is latched if the clock (CLK) input is held at a high or low logic level. If \overline{LE} is high, the A data is stored in the latch/flip-flop on the low-to-high transition of CLK. When \overline{OE} is high, the outputs are in the high-impedance state.

The ALVC162334 has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels.

APPLICATIONS:

- SDRAM Modules
- PC Motherboards
- Workstations

FUNCTIONAL BLOCK DIAGRAM


IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

DSC-4687/7

IDT74ALVC162334 3.3V CMOS16-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

INDUSTRIALTEMPERATURERANGE

PIN CONFIGURATION

TSSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Names Description	
OE 3-State Output Enable Inputs (Active LOW)		
CLK	Register Input Clock	
LE	LE Latch Enable (Active LOW)	
Ax	A x Data Inputs	
Yх	3-State Outputs	

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	-50 to +50	mA
lıк	Continuous Clamp Current, VI < 0 or VI > Vcc	±50	mA
Іок	Continuous Clamp Current, Vo < 0	50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	рF
Соит	I/O Port Capacitance	VIN = 0V	7	9	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLE⁽¹⁾

	Inputs				
ŌĒ	ĪĒ	CLK	Ах	Yx	
Н	Х	Х	Х	Z	
L	L	Х	L	L	
L	L	Х	Н	Н	
L	Н	\uparrow	L	L	
L	Н	\uparrow	Н	Н	
L	Н	L or H	Х	Y ₀ ⁽²⁾	

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High Impedance

 \uparrow = LOW-to-HIGH transition

2. Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40 °C to +85 °C

Symbol	Parameter	Test Co	nditions	Min.	Тур. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V			-	0.7	V
		Vcc = 2.7V to 3.6V		—	—	0.8	
Іін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	—	±5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	-	±5	μA
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	±10	μA
Iozl	(3-State Output pins)		Vo = GND	_	_	±10	
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V			100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = 3.6V Vin = GND or Vcc		-	0.1	40	μA
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other	inputs at Vcc or GND	-	-	750	μA

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	TestC	onditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = - 4mA	1.9	_	
			Iон = - 6mA	1.7	_	
		Vcc = 2.7V	Iон = - 4mA	2.2	_	
			Iон = - 8mA	2	_	
		Vcc = 3V	Iон = - 6mA	2.4	_	
			Іон = – 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 4mA	_	0.4	
			IoL = 6mA	_	0.55	
		Vcc = 2.7V	IoL = 4mA	_	0.4	
			IoL = 8mA	_	0.6	
		Vcc = 3V	IoL = 6mA	—	0.55	
			IoL = 12mA	_	0.8	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, TA = 25°C

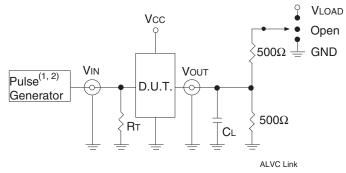
			$Vcc = 2.5V \pm 0.2V$	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
Cpd	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	31	36	pF
Cpd	Power Dissipation Capacitance Outputs disabled		7	11	

SWITCHING CHARACTERISTICS⁽¹⁾

		Vcc = 2.	5V ± 0.2V	Vcc	= 2.7V	Vcc = 3.3	$SV \pm 0.3V$	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fMAX		150	-	150	—	150	-	MHz
t PLH	Propagation Delay	1	4.4	_	4.5	1.1	3.6	ns
t PHL	Ax to Yx							
t PLH	Propagation Delay	1	5.8	—	6	1.3	5	ns
t PHL	LE to Yx							
t PLH	Propagation Delay	1	5.2	-	5.4	1	4.9	ns
t PHL	CLK toYx							
t PZH	Output Enable Time	1	6.4	-	6.4	1.1	5.4	ns
tPZL	OE to Yx							
tPHZ	OutputDisableTime	1	4.7	_	5.1	1.7	5	ns
tPLZ	OE to Yx							
tw	Pulse Duration, IE LOW	3.3	-	3.3	—	3.3	-	ns
tw	Pulse Duration, CLK HIGH or LOW	3.3	—	3.3	—	3.3	-	ns
ts∪	Set-up Time, data before CLK↑	1.4	-	1.7	—	1.5	-	ns
ts∪	Set-up Time, data before \overline{LE} , CLK HIGH	1.2	_	1.6	—	1.3	_	ns
ts∪	Set-up Time, data before \overline{LE} , CLK LOW	1.4	-	1.5	—	1.2	-	ns
ťH	Hold Time, data after CLK1	0.9	_	0.9	_	0.9	_	ns
ťH	Hold Time, data after $\overline{\text{LE}}$, CLK HIGH or LOW	1.1	_	1.1	—	1.1	_	ns
tSK(O)	Output Skew ⁽²⁾	-	_	_	_	_	500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = - 40°C to + 85°C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74ALVC162334 3.3V CMOS16-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

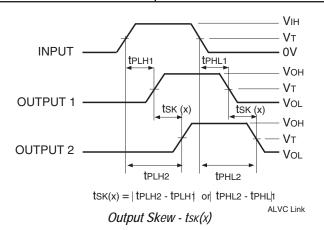
INDUSTRIAL TEMPERATURE RANGE

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vт	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

DEFINITIONS:

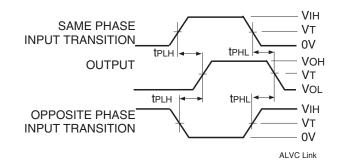
CL = Load capacitance: includes jig and probe capacitance.

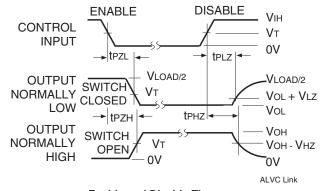

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2ns; tR \leq 2ns.

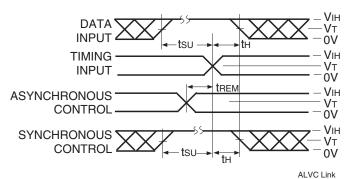
SWITCH POSITION

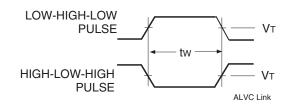

•••••••••••••••••••••••••••••••••••••••	
Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open


NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

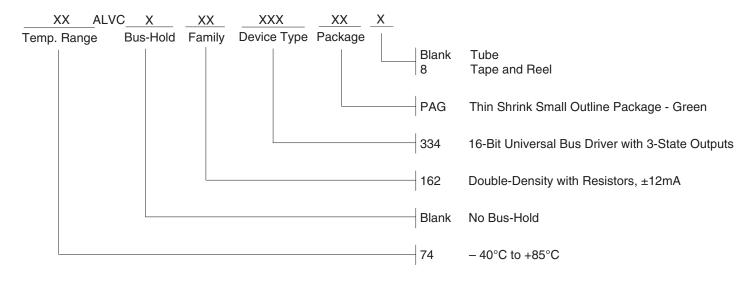
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.




Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

Pulse Width

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

06/15/2016 Pg. 6 Updated the ordering information by adding Tape and Reel.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NLU1GT126CMUTCG PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G 74HCT126T14-13 NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLU2G17AMUTCG LE87100NQC LE87100NQCT LE87285NQC LE87285NQCT LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT LE87286NQCT