FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsK(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, Normal Range
- $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V , Extended Range
- $\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$
- CMOS power levels ($0.4 \mu \mathrm{~W}$ typ. static)
- Rail-to-Rail output swing for increased noise margin
- Available in SSOP and TSSOP packages

DRIVE FEATURES:

- Balanced Output Drivers: $\pm 12 \mathrm{~mA}$
- Low switching noise

APPLICATIONS:

- 3.3V high speed systems
- 3.3V and lower voltage computing systems

DESCRIPTION:

This 16-bittransparentD-type latch is builtusing advanced dualmetal CMOS technology. The ALVCH162373 is particularly suitableforimple-menting buffer registers, //O ports, bidirectional busdrivers, and working registers. This device can beused astwo8-bitlatches orone16-bitlatch. When the latch enable(LE) inputis high, the Qoutputsfollow the data (D) inputs. WhenLE is takenlow, the Q outputs are latched at the levels set up at the D inputs.

Abuffered output-enable $(\overline{\mathrm{OE}})$ can beused to place the eightoutputs in either a normal logic state(high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability todrive bus lines withoutneed for interface or pullup components. $\overline{\mathrm{OE}}$ does not affect internal operations of the latch. Old data can be retained or new data can be enetered while the outputs are in the high-impedance state.

The ALVCH162373 has series resistors in the device outputstructure which will significantly reduce line noise when used with light loads. This driver has been designed to drive $\pm 12 \mathrm{~mA}$ at the designated threshold levels.

The ALVCH162373 has "bus-hold" which retains the inputs' last state whenever the inputgoes to ahighimpedance. This prevents floating inputs and eliminates the need for pull-up/down resistor.

FUNCTIONAL BLOCK DIAGRAM

TO 7 OTHER CHANNELS

PIN CONFIGURATION

1OE \square 1
1Q1 \square 2

SSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ${ }^{(3)}$	Terminal Voltage with Respect to GND	-0.5 to Vcc +0.5	V
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-50 to +50	mA
IIK	Continuous Clamp Current, VI < 0 or VI > VcC	± 50	mA
IOK	Continuous Clamp Current, Vo <0	-50	mA
ICC ISS	Continuous Current through each VcC or GND	± 100	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc.

CAPACITANCE ($\left.\mathrm{TA}^{2}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	5	7	pF
COUT	Output Capacitance	VouT $=0 \mathrm{~V}$	7	9	pF
CI/O	I/O Port Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	7	9	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
$x D x$	Data Inputs ${ }^{(1)}$
$x L E$	LatchEnable Inputs
$x Q x$	3-StateOutputs
$x \overline{\mathrm{E}}$	3-State OutputEnable Input(ActiveLOW)

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (EACH 8-BIT SECTION) ${ }^{(1)}$

Inputs			Outputs
$x \overline{\mathrm{O}}$	xLE	xDx	xQx
L	H	H	H
L	H	L	L
H	X	X	Z
L	L	X	$\mathrm{Q}_{0}{ }^{(2)}$

NOTES:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High Impedance
2. Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Operating Condition: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage Level	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V		1.7	-	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V		2	-	-	
VIL	Input LOW Voltage Level	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7 V		-	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V		-	-	0.8	
IIH	Input HIGH Current	$\mathrm{Vcc}=3.6 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{Vcc}$	-	-	± 5	$\mu \mathrm{A}$
ILL	Input LOW Current	$\mathrm{Vcc}=3.6 \mathrm{~V}$	$\mathrm{VI}_{\mathrm{I}}=\mathrm{GND}$	-	-	± 5	$\mu \mathrm{A}$
IozH	High Impedance Output Current (3-State Output pins)	$\mathrm{Vcc}=3.6 \mathrm{~V}$	$\mathrm{Vo}=\mathrm{Vcc}$	-	-	± 10	$\mu \mathrm{A}$
lozl			$\mathrm{Vo}=\mathrm{GND}$	-	-	± 10	
VIK	Clamp Diode Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}, \mathrm{lin}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
VH	Input Hysteresis	$\mathrm{Vcc}=3.3 \mathrm{~V}$		-	100	-	mV
$\begin{aligned} & \text { ICCL } \\ & \text { ICCH } \\ & \text { ICCZ } \end{aligned}$	Quiescent Power Supply Current	$\begin{aligned} & \hline \mathrm{VCC}=3.6 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \text { or Vcc } \end{aligned}$		-	0.1	40	$\mu \mathrm{A}$
$\Delta \mathrm{lc}$ C	Quiescent Power Supply Current Variation	One input at Vcc-0.6V, other inputs at Vcc or GND		-	-	750	$\mu \mathrm{A}$

NOTE:

1. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ${ }^{(1)}$	Test Conditions		Min.	Typ. ${ }^{(2)}$	Max.	Unit
IBHH	Bus-Hold InputSustain Current	$\mathrm{Vcc}=3 \mathrm{~V}$	$\mathrm{V}=2 \mathrm{~V}$	-75	-	-	$\mu \mathrm{A}$
IBHL			$\mathrm{VI}=0.8 \mathrm{~V}$	75	-	-	
IBHH	Bus-Hold InputSustain Current	$\mathrm{Vcc}=2.3 \mathrm{~V}$	$\mathrm{VI}=1.7 \mathrm{~V}$	-45	-	-	$\mu \mathrm{A}$
IBHL			$\mathrm{V}_{1}=0.7 \mathrm{~V}$	45	-	-	
$\begin{aligned} & \text { ІвнHO } \\ & \text { IBHLO } \end{aligned}$	Bus-Hold Input Overdrive Current	$\mathrm{Vcc}=3.6 \mathrm{~V}$	$\mathrm{VI}=0$ to 3.6 V	-	-	± 500	$\mu \mathrm{A}$

NOTES:

1. Pins with Bus-Hold are identified in the pin description.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	TestConditions ${ }^{(1)}$		Min.	Max.	Unit
VoH	Output HIGH Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 3.6V	ІОН $=-0.1 \mathrm{~mA}$	Vcc-0.2	-	V
		$\mathrm{Vcc}=2.3 \mathrm{~V}$	ІОН $=-4 \mathrm{~mA}$	1.9	-	
			$\mathrm{IOH}=-6 \mathrm{~mA}$	1.7	-	
		$\mathrm{Vcc}=2.7 \mathrm{~V}$	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.2	-	
			$\mathrm{IOH}=-8 \mathrm{~mA}$	2	-	
		$\mathrm{Vcc}=3 \mathrm{~V}$	$\mathrm{IOH}=-6 \mathrm{~mA}$	2.4	-	
			$\mathrm{IOH}=-12 \mathrm{~mA}$	2	-	
Vol	OutputLOWVoltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 3.6V	$\mathrm{IOL}=0.1 \mathrm{~mA}$	-	0.2	V
		$\mathrm{Vcc}=2.3 \mathrm{~V}$	$\mathrm{OL}=4 \mathrm{~mA}$	-	0.4	
			$\mathrm{IOL}=6 \mathrm{~mA}$	-	0.55	
		$\mathrm{Vcc}=2.7 \mathrm{~V}$	$\mathrm{IOL}=4 \mathrm{~mA}$	-	0.4	
			$\mathrm{IOL}=8 \mathrm{~mA}$	-	0.6	
		$\mathrm{Vcc}=3 \mathrm{~V}$	$\mathrm{IOL}=6 \mathrm{~mA}$	-	0.55	
			$\mathrm{loL}=12 \mathrm{~mA}$	-	0.8	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

OPERATING CHARACTERISTICS, $\mathrm{TA}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	Unit
			Typical	Typical	
CPD	PowerDissipation Capacitance Outputs enabled	$C L=0 p F, f=10 \mathrm{Mhz}$	19	22	pF
CPD	PowerDissipation Capacitance Outputs disabled		4	5	

SWITCHING CHARACTERISTICS(1)

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=2.7 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	PropagationDelay xDx to xQx	1.5	5.3	1.5	4.5	1.5	4	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	PropagationDelay xLE to xQx	2	5.6	2	5	2	4	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	OutputEnable Time $x \overline{O E}$ to $x Q x$	1.5	6.5	1.5	6	1.5	5	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	OutputDisable Time $x \overline{O E}$ to $x Q x$	1.5	5.6	1.5	5.5	1.5	4.5	ns
tsu	Setup Time, databefore LE \downarrow	2	-	2	-	2	-	ns
H	Hold Time, data afterLE \downarrow	1.5	-	1.5	-	1.5	-	ns
tw	Pulse Duration, LE HIGH or LOW	3.3	-	3.3	-	3.3	-	ns
tSk(0)	OutputSkew ${ }^{(2)}$	-	-	-	-	-	500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)}=\mathbf{3 . 3} \pm \mathbf{0 . 3 V}$	$\mathrm{Vcc}^{(1)}=\mathbf{2 . 7 V}$	$\mathrm{Vcc}^{(2)}=\mathbf{2 . 5 V} \pm 0.2 \mathrm{~V}$	Unit
VLOAD	6	6	$2 \times \mathrm{Vcc}$	V
VIH	2.7	2.7	Vcc	V
V T	1.5	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	300	150	mV
VHz	300	300	150	mV
CL	50	50	30	pF

DEFINITIONS:
$C L=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.
NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz} ; \mathrm{tF} \leq 2.5 \mathrm{~ns} ; \mathrm{tr} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2 \mathrm{~ns}$; $\mathrm{tR} \leq 2 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
Open Drain	
Disable Low	VLoAD
Enable Low	GND
Disable High	
Enable High	Open
All Other Tests	

tSK $(\mathrm{x})=\mid$ tPLH2 $-\mathrm{tPLH} \mid$ or \mid tPHL2 $-\mathrm{tPHL} \mid 1$
Output Skew - tsk $(x) \quad$ ALVC Link

NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

Propagation Delay

Enable and Disable Times

ALVC Link
NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times

ALVC Link

Pulse Width

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

06/15/2016 Pg. $6 \quad$ Updated the ordering information by adding Tape and Reel.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Latches category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
ML4875CS-5 401639B 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 59628863901RA 5962-88639012A NLV14042BDR2G M22W-1333-21/3/45-90-02 (NI 2.PM18.002-18 2.PM18.006-18 2.T18.001-21 2.T18.00218 2.T18.006-18 CQ/A-M22X1,5-45-32 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 MM74HC373WM MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 MIC58P01YV 74AHCT573D.112 74LCX16373MTDX CQ/A-M22X1,5-45-16 CQ/A-M22X1,5-45-18 CQ/A-M22X1,5-45-20 CQ/A-M22X1,5-45-24 CQ/A-M22X1,5-45-30 CQT/A-32-18 AE-V0 CQT/A32 20-AE-V0 CQT/A-32 32-AE-V0 CY54FCT841ATDMB TPIC6B273DWRG4 Z-2106-25001-22 2.904.005 2.904.006 2.904.008 2.KLB-KW8.001PA-07 2.KLB-T9.001PA-07 2.KL-T9.002-02 2.L18.001-18 2.L30.002-30 2.PM30.001-33

