Renesns

8:1 MULTIPLEXER/

 DEMULTIPLEXER
FEATURES:

- Functionally equivalent to QS3251
- 5Ω bi-directional switch connection between two ports
- Isolation under power-off conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100 mA
- $\mathrm{Vcc}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$, Normal Range
- ESD > 2000V per MIL-STD-883, Method 3015; $>200 \mathrm{~V}$ using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in QSOP and TSSOP packages

DESCRIPTION:

The CBTLV3251 is a 1-of-8 high-speed multiplexer/demultiplexer. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The select input (S0, S1, S2) controls the data flow. The multiplexer/ demultiplexer switches are disabled when the output-enable $(\overline{\mathrm{OE}})$ input is high.

To ensure that the device is in high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should betied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTIONAL BLOCK DIAGRAM

74CBTLV3251
LOW-VOLTAGE8:1MULTIPLEXER/DEMULTIPLEXER
INDUSTRIALTEMPERATURERANGE

PIN CONFIGURATION

TOP VIEW

PackageType	PackageCode	Order Code
TSSOP	PGG16	PGG
QSOP	PCG16	QG

SIMPLIFIED SCHEMATIC, EACH SWITCH

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
Vcc	SupplyVoltage Range	-0.5 to +4.6	V
VI	Input Voltage Range	-0.5 to +4.6	V
	Continuous Channel Current	128	mA
IIK	Input Clamp Current, $\mathrm{V} / \mathrm{O} 0<0$	-50	mA
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTION TABLE(1)

Inputs				Function
$\overline{\mathrm{O}} \overline{\mathrm{E}}$	S2	S1	S0	
L	L	L	L	A Port = B1 Port
L	L	L	H	A Port = B2 Port
L	L	H	L	A Port = B3 Port
L	L	H	H	A Port = B4 Port
L	H	L	L	A Port = B5 Port
L	H	L	H	A Port = B6 Port
L	H	H	L	A Port = B7 Port
L	H	H	H	A Port = B8 Port
H	X	X	X	Disconnect

NOTE:

1. $\mathrm{H}=$ HIGH Voltage Level

L = LOW Voltage Level
X = Don't Care

OPERATING CHARACTERISTICS, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (1)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	1.7	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	2	-	
VIL	Low-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7 V	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	-	0.8	
TA	Operating Free-Air Temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

Renesas

74CBTLV3251
LOW-VOLTAGE8:1MULTIPLEXER/DEMULTIPLEXER
INDUSTRIALTEMPERATURERANGE
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Operating Conditions: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{11}$	Max.	Unit
VIK	Control Inputs, Data Inputs	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{II}=-18 \mathrm{~mA}$		-	-	-1.2	V
11	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{~V}$ = Vcc or GND		-	-	± 1	$\mu \mathrm{A}$
Ioz	Data I/O	$\mathrm{Vcc}=3.6 \mathrm{~V}$, Vo $=0$ or 3.6 V , switch disabled		-	-	5	$\mu \mathrm{A}$
IofF		$\mathrm{Vcc}=0, \mathrm{VI}$ or $\mathrm{Vo}=0$ to 3.6V		-	-	50	$\mu \mathrm{A}$
IcC		$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{lo}=0, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	10	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}{ }^{(2)}$	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}$, one input at 3 V , other inputs at Vcc or GND		-	-	300	$\mu \mathrm{A}$
Cl	Control Inputs	$\mathrm{VI}=3 \mathrm{~V}$ or 0		-	4	-	pF
CIo(OFF)	A Port	$\mathrm{Vo}=3 \mathrm{~V}$ or $0, \overline{\mathrm{OE}}=\mathrm{Vcc}=3.3 \mathrm{~V}$		-	40.5	-	pF
	B Port			-	6	-	
Ron ${ }^{(3)}$	$\mathrm{Vcc}=2.3 \mathrm{~V}$	V I $=0$	$1 \mathrm{O}=64 \mathrm{~mA}$	-	5	8	Ω
	Typ. at $\mathrm{Vcc}=2.5 \mathrm{~V}$		$10=24 \mathrm{~mA}$	-	5	8	
		$\mathrm{V}_{1}=1.7 \mathrm{~V}$	$\mathrm{l}=15 \mathrm{~mA}$	-	27	40	
	$V \mathrm{Cc}=3 \mathrm{~V}$	$\mathrm{V}_{1}=0$	$1 \mathrm{O}=64 \mathrm{~mA}$	-	5	7	
			$10=24 \mathrm{~mA}$	-	5	7	
		V I $=2.4 \mathrm{~V}$	$\mathrm{I}=15 \mathrm{~mA}$	-	10	15	

NOTES:

1. Typical values are at $\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The increase in supply current is attributable to each current that is at the specified voltage level rather than Vcc or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	
$\mathrm{tpD}^{(1)}$	PropagationDelay	-	0.15	-	0.25	ns
	A to B or B to A					
tsel	Select Time	1	4.8	1	4.5	ns
	S to A or B					
ten	Enable Time	1	4.8	1	4.5	ns
	S to B					
tols	Disable Time	1	5.1	1	5.3	ns
	S to B					
ten	OutputEnable Time	1	5	1	4.8	ns
	$\overline{\mathrm{OE}}$ to A or B					
tols	OutputDisable Time	1	5.5	1	6	ns
	$\overline{\mathrm{OE}}$ to A or B					

NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance driven by an ideal voltage source (zero output impedance).

74CBTLV3251
LOW-VOLTAGE8:1MULTIPLEXER/DEMULTIPLEXER

TEST CIRCUITS AND WAVEFORMS
TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)} \mathbf{=} \mathbf{3 . 3} \mathbf{V} \pm 0.3 \mathrm{~V}$	$\mathrm{Vcc}^{(2)} \mathbf{=} \mathbf{2 . 5} \mathrm{V} \pm \mathbf{0 . 2 V}$	Unit
VLOAD	6	$2 \times \mathrm{Vcc}$	V
VIH	3	Vcc	V
$\mathrm{V} T$	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs

DEFINITIONS:

$C L=$ Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tPLZ/tPZL	VLOAD
tPHZ/tPZH	GND
tsEL	Open
tPD	Open

Propagation Delay

Enable and Disable Times

74CBTLV3251
LOW-VOLTAGE8:1MULTIPLEXER/DEMULTIPLEXER
ORDERING INFORMATION

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
	74CBTLV3251PGG	PGG16	TSSOP	I
	74CBTLV3251PGG8	PGG16	TSSOP	I
	74CBTLV3251QG	PCG16	QSOP	I
	74CBTLV3251QG8	PCG16	QSOP	I

Datasheet Document History

12/18/2014
05/10/2019

Pg. 5 Updated the ordering information by removing non RoHS part and adding Tape and Reel information.
Pg. 2,5 Added table under pin configuration diagram with detailed package information and orderable partinformation table. Updated the ordering information diagram in clearer detail.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX MUX36S16IRSNR TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR HEF4053BT.653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7 MAX4704EUB+T ADG1406BRUZ-REEL7 LTC4305IDHD\#PBF CD4053BPWRG4 74HC4053D. 653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB.112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB. 112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB.112 74HCT4067D.112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 5962-8771601EA 5962-87716022A ADG5249FBRUZ ADG1438BRUZ AD7506JNZ

