FEATURES:

- 5Ω A/B bi-directional switch
- Isolation Under Power-Off Conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100 mA
- $\mathrm{Vcc}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in SSOP, QSOP, and TSSOP packages

APPLICATIONS:

- 3.3V High Speed Bus Switching and Bus Isolation

DESCRIPTION:

The CBTLV3862 provides ten bits of high-speed bus switching with low on-state resistance of the switch allowing connections to be made with minimal propagation delay.
The device is organized as one 10-bit bus switch. The switches are controlled by independent active-low enable ($\overline{\mathrm{OE}})$ and active-high enable (OE) controls.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver, and OE should be tied to GND.

FUNCTIONAL BLOCK DIAGRAM

SIMPLIFIED SCHEM ATIC, EACH SWITCH

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 4.6	V
V I	InputVoltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
IIK	Input Clamp Current, V/IO <0	-50	mA
TsTG	Storage Temperature Range	$-65 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTION TABLE ${ }^{(1)}$

Inputs		Function	
OE	$\overline{\mathrm{OE}}$		
L	L	Disconnect	
L	H	Disconnect	
H	L	A Port = B Port	
H	H	Disconnect	

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level

OPERATING CHARACTERISTICS ${ }^{(1)}$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	1.7	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	2	-	
VIL	Low-Level Control InputVoltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	-	0.8	
TA	Operating Free-Air Temperature		-40	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Condition: TA $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIK	Control Inputs, Data I/O	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{II}=-18 \mathrm{~mA}$		-	-	-1.2	V
11	Control Inputs, Data I/O	$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	± 1	$\mu \mathrm{A}$
Ioz	Data I/O	$\mathrm{Vcc}=3.6 \mathrm{~V}$, Vo $=0 \mathrm{~V}$ or 3.6V switch disabled		-	-	5	$\mu \mathrm{A}$
IofF		$\mathrm{Vcc}=0 \mathrm{~V}, \mathrm{VI}$ or Vo $=0 \mathrm{~V}$ or 3.6 V		-	-	50	$\mu \mathrm{A}$
ICC		$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{lo}=0, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	10	$\mu \mathrm{A}$
$\Delta \mathrm{lc} \mathrm{C}^{(2)}$	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}$, one input at 3 V , other inputs at Vcc or GND		-	-	300	$\mu \mathrm{A}$
Cl	Control Inputs	$\mathrm{VI}=3 \mathrm{~V}$ or 0		-	4	-	pF
CIO(OFF)		$\mathrm{Vo}=3 \mathrm{~V}$ or 0 (switch off)		-	6	-	pF
Ron(3)	$\mathrm{VCC}=2.3 \mathrm{~V}$	V I $=0$	$1 \mathrm{O}=64 \mathrm{~mA}$	-	5	8	Ω
	Typ. at $\mathrm{Vcc}=2.5 \mathrm{~V}$		$10=24 \mathrm{~mA}$	-	5	8	
		$\mathrm{VI}=1.7 \mathrm{~V}$	$\mathrm{lo}=15 \mathrm{~mA}$	-	27	40	
	$\mathrm{Vcc}=3 \mathrm{~V}$	$\mathrm{VI}=0$	$10=64 \mathrm{~mA}$	-	5	7	
			$10=24 \mathrm{~mA}$	-	5	7	
		$\mathrm{VI}=2.4 \mathrm{~V}$	$\mathrm{lo}=15 \mathrm{~mA}$	-	10	15	

NOTES:

1. Typical Values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	
tpD ${ }^{(1)}$	PropagationDelay A to B or B to A	-	0.15	-	0.25	ns
ten	OutputEnable Time $\overline{\mathrm{OE}}$ to A or B	1	4.5	1	4.2	ns
tols	OutputDisable Time $\overline{\mathrm{OE}}$ to A or B	1	5	1	5	ns
ten	OutputEnable Time OE to A or B	1	4.5	1	4.2	ns
tols	OutputDisable Time OE to A or B	1	5	1	6	ns

NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impededance).

TEST CIRCUITS AND WAVEFORMS
TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)} \mathbf{= 3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathrm{Vcc}^{(2)} \mathbf{2} \mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	Unit
VLOAD	6	$2 \times \mathrm{Vcc}$	V
VIH	3	Vcc	V
VT	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs
DEFINITIONS:
$C L=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz} ; \mathrm{tF} \leq 2.5 \mathrm{~ns} ; \mathrm{tR} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2 \mathrm{~ns}$; $\mathrm{tR} \leq 2 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tPLZItPL	VLOAD
tPHZIPzH	GND
tPD	Open

Propagation Delay

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

ORDERING INFORMATION

Datasheet Document History

Pg. 5 Updated the ordering information by removing the "IDT" notation, non RoHS part and by adding Tape and Reel information.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Bus Switch ICs category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MT8986AE1 TC7MPB9307FT(EL) MT8985AE1 MT8986AP1 PI3CH800LE PI3C32X384BE ZL50023GAG2 MT8986AL1 MT8981DP1 PI3VT3245-ALE PI3CH800QE MT90823AB1 PI3VT3245-AQE PI3CH800QEX PI3C3384QE PI3C3305UEX PI3B3861QE PI3B3245QEX PI3B3245QE PI3CH1000LE PI3CH400ZBEX PI3CH401LE PI3CH401LEX TC7WBL3305CFK(5L,F 74CB3Q3125DBQRE4 TC7WBL3305CFK,LF SN74CBT16245CDGGR PI5C3245QE 72V90823PQFG PI3B3861QEX PI3C3126QEX PI3C3245QE PI5C3384QE PI3CH281QE QS3VH16244PAG8 PI3CH400LE PI3B3245LEX PI3B3245LE PI3C3306LEX PI5C3245LEX PI5C3306LEX PI3B3126LE PI3B3125LEX 72V73273BBG 74CBTLV3384PGG 74CBTLV3862PGG QS3126QG QS32245QG QS3244QG QS3245SOG8

