FEATURES:

- 0.5 MICRON CMOS Technology
- High-speed, low-power CMOS replacement for ABT functions
- Typical tsk(0) (Output Skew) < 250ps
- Low input and output leakage $\leq 1 \mu \mathrm{~A}$ (max.)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Bus Hold retains last active bus state during 3 -state
- Eliminates the need for external pull up resistors
- Available in SSOP and TSSOP packages

DESCRIPTION:

The FCT162H245T 16-bit transceiver is built using advanced dual metal CMOS technology. These high-speed, low-power transceivers are ideal for synchronous communication betweentwo busses (A andB). The Direction and Output Enable controls operate these devices as eithertwo independent8-bit transceivers orone 16-bittransceiver. The direction control pin (xDIR) controls the direction of dataflow. The outputenable pin ($\mathrm{x} \overline{\mathrm{OE}}$) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.
The FCT162H245T has "Bus Hold" which retains the input's last state wheneverthe inputgoes to highimpedance. This prevents "floating" inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ${ }^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to 7	V
VTERM $^{(3)}$	Terminal Voltage with Respect to GND	-0.5 to VCc +0.5	V
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-60 to +120	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. All device terminals except FCT162XXXT and FCT166XXT (A-Port) Output and I/O terminals.
3. Output and I/O terminals for FCT162XXXT and FCT166XXXT (A-Port).

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	3.5	6	pF
Cout	Output Capacitance	VOUT $=0 \mathrm{~V}$	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
$x \overline{\mathrm{O}} \overline{\mathrm{E}}$	Outputs Enable Input(ActiveLOW)
xDIR	DirectionControl Inputs
xAx	Side A Inputs or3-StateOutputs ${ }^{(1)}$
xBx	SideBInputs or3-StateOutputs ${ }^{(1)}$

NOTE:

1. These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE(1)

Inputs		Output
$\mathrm{x} \overline{\mathrm{OE}}$	xDIR	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	HighZState

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter			TestConditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Unit	
VIH	Input HIGH Level		Guaranteed Logic HIGH Level		2	-	-	V	
VIL	InputLOW Level		GuaranteedLogicLOWLevel		-	-	0.8	V	
IH	Input HIGH Current ${ }^{(4)}$	Standard Input(5)	VcC = Max.	$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$	
		Standard//O${ }^{(5)}$			-	-	± 1		
		Bus-hold Input			-	-	± 100		
		Bus-hold I/O			-	-	± 100		
IIL	Input LOW Current ${ }^{(4)}$	Standard Input ${ }^{(5)}$		V = GND	-	-	± 1		
		Standard// $0^{(5)}$			-	-	± 1		
		Bus-hold Input			-	-	± 100		
		Bus-hold I/O			-	-	± 100		
IBHH	Bus-holdSustain Current(4)	Bus-hold Input	$\mathrm{VcC}=$ Min.	$\mathrm{VI}=2 \mathrm{~V}$	-50	-	-	$\mu \mathrm{A}$	
IBHL				$\mathrm{VI}=0.8 \mathrm{~V}$	50	-	-		
IozH	High Impedance OutputCurrent (3-StateOutputpins) ${ }^{(5,6)}$		$\mathrm{Vcc}=$ Max.	$\mathrm{Vo}=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$	
Iozl			$\mathrm{Vo}=0.5 \mathrm{~V}$	-	-	± 1			
VIK	Clamp Diode Voltage			$\mathrm{VcC}=$ Min., $\mathrm{IIN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
Ios	ShortCircuit Current		$\mathrm{Vcc}=$ Max., $\mathrm{Vo}=\mathrm{GND}^{(3)}$		-80	-140	-250	mA	
VH	InputHysteresis			-	-	100	-	mV	
ICCL ICCH ICCZ	Quiescent Power Supply Current		$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=\mathrm{GND} \text { or Vcc } \end{aligned}$		-	5	500	$\mu \mathrm{A}$	

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
IODL	OutputLOW Current	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{Vo}=1.5 \mathrm{~V}{ }^{(3)}$		60	115	200	mA
IODH	Output HIGH Current	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{Vo}=1.5 \mathrm{~V}{ }^{(3)}$		-60	-115	-200	mA
VOH	Output HIGH Voltage	$\begin{aligned} & \text { VCC }=\text { Min. } \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$\mathrm{IOH}=-24 \mathrm{~mA}$	2.4	3.3	-	V
Vol	OutputLOW Voltage	$\begin{aligned} & \text { VCC }=\text { Min. } \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$\mathrm{IOH}=24 \mathrm{~mA}$	-	0.3	0.55	V

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
4. Pins with Bus-hold are identified in the pin description.
5. The test limit for this parameter is $\pm 5 \mu \mathrm{~A}$ at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$.
6. Does not include Bus-hold I/O pins.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lc}$ c	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \end{aligned}$		-	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ${ }^{(4)}$	Vcc = Max. Outputs Open $x \overline{O E}=x D I R=\text { GND }$ One InputToggling 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	60	100	$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
Ic	Total PowerSupply Current ${ }^{(6)}$	$\begin{aligned} & \text { Vcc = Max. } \\ & \text { OutputsOpen } \\ & \text { fi }=10 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.6	1.5	mA
		$\begin{aligned} & 50 \% \text { Duty Cycle } \\ & \text { x } \overline{O E}=x D I R=\text { GND } \\ & \text { OneBit Toggling } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.9	2.3	
		$\begin{aligned} & \text { Vcc = Max. } \\ & \text { OutputsOpen } \\ & \text { fi }=2.5 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VcC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	2.4	4.5(5)	
		$\begin{aligned} & 50 \% \text { Duty Cycle } \\ & \text { x } \overline{\mathrm{OE}}=\text { xDIR }=\text { GND } \\ & \text { SixteenBits Toggling } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	6.4	16.5 ${ }^{(5)}$	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input $(\mathrm{VIN}=3.4 \mathrm{~V})$. All other inputs at Vcc or GND.
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
6. IC $=$ IQUIESCENT + linputs + IdYnamic
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICC} D \mathrm{DNT}+\mathrm{ICCD}(\mathrm{fcPNCP} / 2+\mathrm{fiNi})$
ICC = Quiescent Current (ICCL, ICCH and ICcz)
$\Delta \mathrm{IcC}=$ Power Supply Current for a TTL High Input $(\mathrm{VIN}=3.4 \mathrm{~V})$
Dh = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
NCP = Number of Clock Inputs at fCP
fi = Input Frequency
$\mathrm{Ni}=$ Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Condition ${ }^{(1)}$	FCT162H245AT		FCT162H245CT		Unit
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHLL } \end{aligned}$	Propagation Delay A to B, B to A	$\begin{aligned} & C L=50 \mathrm{pF} \\ & R L=500 \Omega \end{aligned}$	1.5	4.6	1.5	3.5	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	OutputEnable Time $x \bar{O} E$ to A or B		1.5	6.2	1.5	4.4	ns
$\begin{aligned} & \mathrm{tPHZ} \\ & \mathrm{tPLZ} \end{aligned}$	OutputDisable Time $x \overline{O E}$ to A or B		1.5	5	1.5	4	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	OutputEnable Time xDIR to A or $\mathrm{B}^{(3)}$		1.5	6.2	1.5	4.8	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	OutputDisable Time xDIR to A or $B^{(3)}$		1.5	5	1.5	4	ns
tSK(0)	OutputSkew ${ }^{(4)}$		-	0.5	-	0.5	ns

NOTES:

1. See test circuit and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. This parameter is guaranteed but not tested.
4. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:
$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tr} \leq 2.5 \mathrm{~ns}$; $\mathrm{tr} \leq 2.5 \mathrm{~ns}$.

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
74LS645N PI74LVCC3245AS 5962-8968201LA 5962-7802301Q2A TC74VCX164245(EL,F MC74LCX245MNTWG
TC7WPB8306L8X,LF(S MM74HC245AMTCX 74LVX245MTC 74ALVC16245MTDX 74LCXR162245MTX 74VCX164245MTDX 74VHC245M 74VHC245MX FXL2TD245L10X 74LVC1T45GM,115 74LVC245ADTR2G TC74AC245P(F) 74LVT245BBT20-13

CD74ACT245M 74AHC245D.112 SN74LVCH16952ADGGR CY74FCT16245TPVCT 74AHCT245PW.118 74LV245DB. 118
74LV245D. 112 74LV245PW. 112 74LVC2245APW. 112 74LVCH245AD. 112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R
74LVCR162245ZQLR SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N
MC100EP16DTR2G 5962-9221403MRA 74ALVC164245PAG 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG
MAX22088GTG+ 74HC646N MAX9320EUA 74AVC8T245PW,118 TC7QPB9306FT(EL) SY88808LMH

