3.3V CMOS 16-BIT TRANSPARENT LATCH

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsK(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, Normal Range, or $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V , Extended Range
- CMOS power levels ($0.4 \mu \mathrm{~W}$ typ. static)
- Rail-to-rail output swing for increased noise margin
- Low Ground Bounce (0.3V typ.)
- Inputs (except I/O) can be driven by 3.3 V or 5 V components
- Available in SSOP and TSSOP packages

DESCRIPTION:

The FCT163373 16-bit transparent D-type latches are built using advanced dual metal CMOS technology. These high-speed, low-power latches are ideal for temporary storage of data. They can be used for implementing memory address latches, I/O ports, and bus drivers. The Output Enable and Latch Enable controls are organized to operate each device as two 8-bit latches or one 16-bit latch. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The inputs of FCT163373 can be driven from either 3.3 V or 5 V devices. This feature allows the use of these transparent latches as translators in a mixed $3.3 \mathrm{~V} / 5 \mathrm{~V}$ supply system. With x LE inputs high, the FCT163373 can be used as a buffer to connect 5 V components to a 3.3 V bus.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SSOP/ TSSOP

TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM $^{(3)}$	Terminal Voltage with Respect to GND	-0.5 to 7	V
VTERM $^{(4)}$	Terminal Voltage with Respect to GND	-0.5 to VCC +0.5	V
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-60 to +60	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. Input terminals
4. Outputs and I/O terminals.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	3.5	6	pF
Cout	Output Capacitance	VOUT $=0 \mathrm{~V}$	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
xDx	Data Inputs
xLE	Latch Enable Input (Active HIGH)
$\mathrm{x} \overline{\mathrm{O}} \mathrm{E}$	OutputEnable Input(ActiveLOW)
xOx	3-StateOutputs

FUNCTION TABLE(1)

Inputs			Outputs
xDx	xLE	$\mathrm{x} \overline{\mathrm{O}}$	xBx
H	H	L	H
L	H	L	L
X	L	L	$\mathrm{O}^{(2)}$
X	X	H	Z

NOTES:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedance
2. Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=2.7 \mathrm{~V}$ to 3.6 V

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level (Input pins)	Guaranteed Logic HIGH Level		2	-	5.5	V
	Input HIGH Level (I/O pins)			2	-	Vcc+0.5	
VIL	Input LOW Level (Input and I/O pins)	Guaranteed Logic LOW Level		-0.5	-	0.8	V
11.	Input HIGH Current (Input pins)	Vcc $=$ Max .	$\mathrm{VI}=5.5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
	Input HIGH Current (I/O pins)		$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 1	
IIL	Input LOW Current (Input pins)		$\mathrm{VI}_{1}=$ GND	-	-	± 1	
	Input LOW Current (I/O pins)		VI = GND	-	-	± 1	
IozH	High Impedance Output Current (3-State Output pins)	$V c c=$ Max	$\mathrm{Vo}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
Iozl			Vo = GND	-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{VCC}=$ Min., $\mathrm{IIN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
IODH	Output HIGH Current	VcC $=3.3 \mathrm{~V}$, VIN $=$ VIH or $\mathrm{VIL}, \mathrm{VO}=1.5 \mathrm{~V}^{(3)}$		-36	-60	-110	mA
IODL	Output LOW Current	Vcc $=3.3 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or $\mathrm{VIL}, \mathrm{Vo}=1.5 \mathrm{~V}^{(3)}$		50	90	200	mA
VOH	Output HIGH Voltage	$\begin{aligned} & \text { VCC }=\operatorname{Min} . \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$\mathrm{IOH}=-0.1 \mathrm{~mA}$	Vcc-0. 2	-	-	V
			$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3	-	
		$\begin{aligned} & \text { VCC }=3 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{VIH} \text { or } \mathrm{VIL} \end{aligned}$	$\mathrm{IOH}=-8 \mathrm{~mA}$	$2.4{ }^{(5)}$	3	-	
Vol	OutputLOW Voltage	$\begin{aligned} & \text { VCC }=\text { Min. } \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$1 \mathrm{OL}=0.1 \mathrm{~mA}$	-	-	0.2	V
			$\mathrm{lOL}=16 \mathrm{~mA}$	-	0.2	0.4	
			$1 \mathrm{OL}=24 \mathrm{~mA}$	-	0.3	0.55	
		$\begin{aligned} & \text { VCC }=3 \mathrm{~V} \\ & \text { VIN }=\text { VIH or } \mathrm{VIL} \end{aligned}$	$\mathrm{IOL}=24 \mathrm{~mA}$	-	0.3	0.5	
los	Short Circuit Current ${ }^{(4)}$	$\mathrm{Vcc}=$ Max., Vo = GND ${ }^{(3)}$		-60	-135	-240	mA
VH	Input Hysteresis	-		-	150	-	mV
$\begin{aligned} & \text { ICCL } \\ & \text { ICCH } \\ & \text { ICCZ } \end{aligned}$	Quiescent Power Supply Current	$\begin{aligned} & \hline \text { Vcc }=\text { Max. } \\ & \text { VIN }=\text { GND or Vcc } \end{aligned}$		-	0.1	10	$\mu \mathrm{A}$

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. This parameter is guaranteed but not tested.
5. $\mathrm{VOH}=\mathrm{Vcc}-0.6 \mathrm{~V}$ at rated current.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lcC}$	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \text { Vcc }=\operatorname{Max} . \\ & \text { VIN }=\operatorname{Vcc}-0.6 V^{(3)} \end{aligned}$		-	2	30	$\mu \mathrm{A}$
ICCD	Dynamic Power Supply Current ${ }^{(4)}$	VCC = Max. Outputs Open $x \overline{O E}=\text { GND }$ One InputToggling 50\% Duty Cycle	$\begin{aligned} & \text { VIN }=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	50	75	$\begin{aligned} & \mu \mathrm{A} / \\ & \mathrm{MHz} \end{aligned}$
Ic	Total Power Supply Current ${ }^{(6)}$	$\begin{aligned} & \text { Vcc = Max., Outputs Open } \\ & \mathrm{fi}_{\mathrm{i}}=10 \mathrm{MHz} \\ & 50 \% \text { Duty Cycle } \\ & \mathrm{x} \overline{\mathrm{OE}}=\mathrm{GND} \\ & \text { xLE = Vcc } \\ & \text { OneBit Toggling } \end{aligned}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \\ & \hline \mathrm{VIN}=\mathrm{VCC}-0.6 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.5	0.8 0.8	mA
		$\begin{aligned} & \text { Vcc = Max., Outputs Open } \\ & \mathrm{fi}_{\mathrm{i}}=2.5 \mathrm{MHz} \\ & 50 \% \text { Duty Cycle } \\ & \times \overline{\mathrm{OE}}=\mathrm{GND} \\ & \mathrm{xLE}=\mathrm{Vcc} \end{aligned}$ Sixteen Bits Toggling	$\begin{aligned} & \text { VIN }=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$ $\begin{aligned} & \mathrm{VIN}=\mathrm{VCC}-0.6 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	2 2	$3^{(5)}$ $3.33^{(5)}$	

NOTES:

1. For conditions shown as max. or min., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input; all other inputs at Vcc or GND.
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
6. IC = IQUIESCENT + linPuts + IDYnAMIC
$I C=I C C+D I C C D H N T+I C C D \quad(f C P N C P / 2+f i N i)$
ICC = Quiescent Current (IcCL, Icch and Iccz)
$\Delta I c C=$ Power Supply Current for a TTL High Input
Dh = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
fCP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
NCP = Number of Clock Inputs at fCP
$\mathrm{fi}_{\mathrm{i}}=$ Input Frequency
$\mathrm{Ni}=$ Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE(1)

Symbol	Parameter	Condition ${ }^{(2)}$	FCT163373A		FCT163373C		Unit
			Min. ${ }^{(3)}$	Max.	Min. ${ }^{(3)}$	Max.	
$\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPH} \mathrm{~L} \end{aligned}$	PropagationDelay xDx to xOx	$\begin{aligned} & C L=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	1.5	5.2	1.5	4.2	ns
$\begin{array}{\|l\|} \hline \text { tPLH } \\ \text { tPHLL } \end{array}$	PropagationDelay xLE to xOx		2	8.5	2	5.5	ns
$\begin{array}{\|l\|} \hline \text { tPZH } \\ \text { tPZL } \\ \hline \end{array}$	OutputEnable Time		1.5	6.5	1.5	5.5	ns
$\begin{array}{\|l\|l\|l\|} \hline \text { tPHZ } \\ \text { tPLZ } \\ \hline \end{array}$	OutputDisable Time		1.5	5.5	1.5	5	ns
tsu	Set-up Time HIGH or LOW, xDx to xLE		2	-	2	-	ns
H	Hold Time HIGH or LOW, xDx to xLE		1.5	-	1.5	-	ns
tw	xLE Pulse Width HIGH		5	-	5	-	ns
tsk(0)	OutputSkew ${ }^{(4)}$		-	0.5	-	0.5	ns

NOTES:

1. Propagation Delays and Enable/Disable times are with $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, Normal Range. For $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V , Extended Range, all Propagation Delays and Enable/Disable times should be degraded by 20%.
2. See test circuit and waveforms.
3. Minimum limits are guaranteed but not tested on Propagation Delays.
4. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	6 V
Disable High Enable High	GND
All Other Tests	Open

DEFINITIONS:
$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; tR $\leq 2.5 \mathrm{~ns}$.
3. if Vcc is below 3V, input voltage swings should be adjusted not to exceed Vcc

ORDERING INFORMATION

Datasheet Document History

09/10/09 Pg. $7 \quad$ Updated the ordering information by removing the "IDT" notation and non RoHS part.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Latches category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
ML4875CS-5 401639B 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 59628863901RA 5962-88639012A NLV14042BDR2G M22W-1333-21/3/45-90-02 (NI 2.PM18.002-18 2.PM18.006-18 2.T18.001-21 2.T18.00218 2.T18.006-18 CQ/A-M22X1,5-45-32 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 MM74HC373WM MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 MIC58P01YV 74AHCT573D.112 74LCX16373MTDX CQ/A-M22X1,5-45-16 CQ/A-M22X1,5-45-18 CQ/A-M22X1,5-45-20 CQ/A-M22X1,5-45-24 CQ/A-M22X1,5-45-30 CQT/A-32-18 AE-V0 CQT/A32 20-AE-V0 CQT/A-32 32-AE-V0 CY54FCT841ATDMB TPIC6B273DWRG4 Z-2106-25001-22 2.904.005 2.904.006 2.904.008 2.KLB-KW8.001PA-07 2.KLB-T9.001PA-07 2.KL-T9.002-02 2.L18.001-18 2.L30.002-30 2.PM30.001-33

