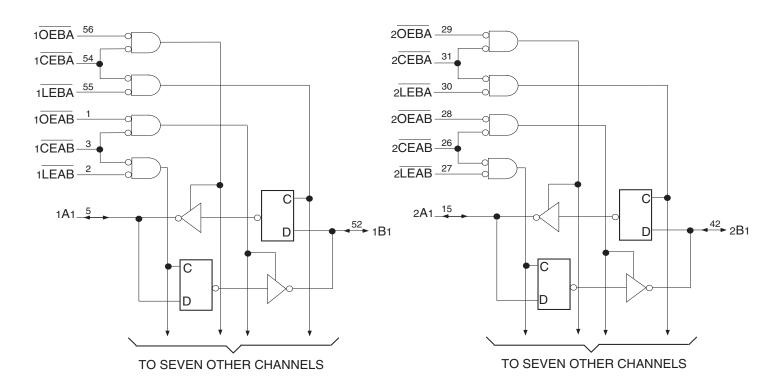
FEATURES:

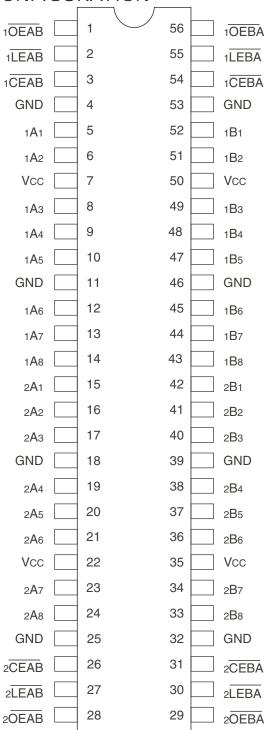

- 0.5 MICRON CMOS Technology
- · High-speed, low-power CMOS replacement for ABT functions
- Typical tsk(o) (Output Skew) < 250ps
- Low input and output leakage ≤1µA (max.)
- $VCC = 5V \pm 10\%$
- · High drive outputs (-32mA IOH, 64mA IOL)
- Power off disable outputs permit "live insertion"
- Typical Volp (Output Ground Bounce) < 1.0V at Vcc = 5V, TA = 25°C
- Available in SSOP and TSSOP packages

DESCRIPTION:

The FCT16543T 16-bit latched transceivers are built using advanced dual metal CMOS technology. These high-speed, low-power devices are organized as two independent 8-bit D-type latched transceivers with separate input and output control to permit independent control of data flow in either direction. For example, the A-to-B Enable (xCEAB) must be low inorder to enter data from the A port or to output data from the B port. xLEAB controls the latch function. When xLEAB is low, the latches are transparent. A subsequent low-to-high transition of xLEAB signal puts the A latches in the storage mode. xOEAB performs output enable function on the B port. Data flow from the B port to the A port is similar but requires using xCEBA, xLEBA, and xOEBA inputs. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The FCT16543T is ideally suited for driving high-capacitance loads and low-impedance backplanes. The output buffers are designed with power off disable capability to allow "live insertion" of boards when used as backplane drivers.

FUNCTIONAL BLOCK DIAGRAM



IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JULY 2017

PIN CONFIGURATION

TOP VIEW

Package Type	Package Type Package Code	
TSSOP	PAG56	PAG
SSOP	PVG56	PVG

PIN DESCRIPTION

Pin Names	Description
xŌĒĀB	A-to-B Output Enable Input (Active LOW)
xŌĒBĀ	B-to-A Output Enable Input (Active LOW)
xCEAB	A-to-B Enable Input (Active LOW)
xCEBA	B-to-A Enable Input (Active LOW)
xLEAB	A-to-B Latch Enable Input (Active LOW)
x <u>LEBA</u>	B-to-A Latch Enable Input (Active LOW)
хАх	A-to-B Data Inputs or B-to-A 3-State Outputs
хВх	B-to-A Data Inputs or A-to-B 3-State Outputs

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to 7	٧
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Іоит	DC Output Current	-60 to +120	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. All device terminals except FCT162XXX Output and I/O terminals.
- 3. Outputs and I/O terminals for FCT162XXX.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	3.5	6	pF
Соит	Output Capacitance	Vout = 0V	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

FUNCTION TABLE(1, 2)

For A-to-B (Symmetric with B-to-A)

	Inputs		Latch Status	Output Buffers
xCEAB	xLEAB	xŌĒĀB	xAx to xBx	хВх
Н	Х	Х	Storing	Z
Х	Н	Х	Storing	Χ
L	L	L	Transparent	Current A Inputs
L	Н	L	Storing	Previous* A Inputs
L	L	Н	Transparent	Z
Ĺ	H	H	Storing	Ž

NOTES:

1. * Before xLEAB LOW-to-HIGH Transition

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

 A-to-B data flow shown; B-to-A flow control is the same, except using xCEBA, xLEBA and xOEBA.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, VCC = $5.0V \pm 10\%$

Symbol	Parameter	Test Conditions ⁽	1)	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	_	-	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		_	_	0.8	V
Iн	Input HIGH Current (Input pins) ⁽⁵⁾	Vcc = Max.	VI = VCC	_	_	±1	μΑ
	Input HIGH Current (I/O pins) ⁽⁵⁾			_	_	±1	
lıL	Input LOW Current (Input pins)(5)		VI = GND	_	_	±1	
	Input LOW Current (I/O pins) ⁽⁵⁾			_	_	±1	
lozh	High Impedance Output Current	Vcc = Max.	Vo = 2.7V	_	_	±1	μΑ
lozl	(3-State Output pins) ⁽⁵⁾		Vo = 0.5V	_	_	±1	
VIK	Clamp Diode Voltage	Vcc = Min., IIN = -18mA	VCC = Min., IIN = -18mA		-0.7	-1.2	V
los	Short Circuit Current	$Vcc = Max., Vo = GND^{(3)}$		-80	-140	-250	mA
VH	Input Hysteresis	_		_	100	-	mV
ICCL	Quiescent Power Supply Current	Vcc = Max		_	5	500	μΑ
Іссн		VIN = GND or Vcc					
Iccz							

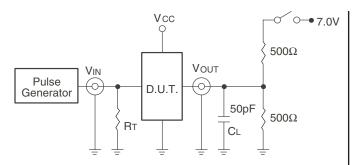
OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
lo	Output Drive Current	$Vcc = Max., Vo = 2.5V^{(3)}$		-50	_	-180	mA
Vон	Output HIGH Voltage	Vcc = Min.	IOH = -3mA	2.5	3.5	ı	V
		VIN = VIH or VIL	IOH = -15mA	2.4	3.5	_	V
			$IOH = -32mA^{(4)}$	2	3	_	V
Vol	Output LOW Voltage	Vcc = Min.	IOL = 64mA	_	0.2	0.55	V
		VIN = VIH or VIL					
loff	Input/Output Power Off Leakage ⁽⁵⁾	$VCC = 0V$, $VIN = or Vo \le 4.5V$		_	_	±1	μА

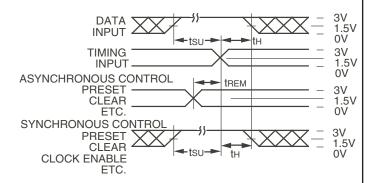
- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Duration of the condition can not exceed one second.
- 5. This test limit for this parameter is $\pm 5\mu A$ at $T_A = -55^{\circ} C$.

POWER SUPPLY CHARACTERISTICS

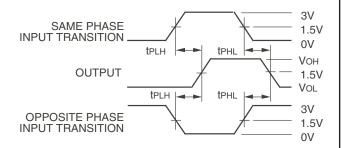
Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	VCC = Max. $VIN = 3.4V(3)$		_	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max., Outputs Open xCEAB and xOEAB = GND xCEBA = Vcc One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND	ı	60	100	μΑ/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max., Outputs Open fi = 10MHz 50% Duty Cycle	VIN = VCC VIN = GND		0.6	1.5	mA
		xCEAB, xCEAB and xOEAB = GND xCEBA = Vcc OneBitToggling	VIN = 3.4V VIN = GND	_	0.9	2.3	
		Vcc = Max., Outputs Open fi = 2.5MHz 50% Duty Cycle	VIN = VCC VIN = GND	_	2.4	4.5 ⁽⁵⁾	
		xCEAB, xCEAB and xOEAB = GND xCEBA = Vcc Sixteen Bits Toggling	VIN = 3.4V VIN = GND	_	6.4	16.5 ⁽⁵⁾	


- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fcpNcp/2 + fiNi)$
 - Icc = Quiescent Current (IccL, IccH and Iccz)
 - ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - $\mathsf{DH} = \mathsf{Duty} \; \mathsf{Cycle} \; \mathsf{for} \; \mathsf{TTL} \; \mathsf{Inputs} \; \mathsf{High}$
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - NCP = Number of Clock Inputs at fcP
 - fi = Input Frequency
 - Ni = Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

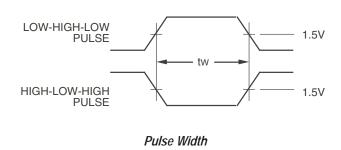

			74FCT16543AT		74FCT1	6543CT	
Symbol	Parameter	Condition ⁽²⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
t PLH	Propagation Delay	CL = 50pF	1.5	6.5	1.5	5.1	ns
t PHL	TransparentMode	$RL = 500\Omega$					
	xAx to xBx or xBx to xAx						
tplh	Propagation Delay		1.5	8	1.5	5.6	ns
t PHL	x LEBA to xAx, x LEAB to xBx						
tphz	Output Enable Time		1.5	9	1.5	7.8	ns
tplz	x OEBA or x OEAB to xAx or xBx						
	xCEBA or xCEAB to xAx or xBx						
tpzh	Output Disable Time		1.5	7.5	1.5	6.5	ns
tpzl	x OEBA or x OEAB to xAx or xBx						
	xCEBA or xCEAB to xAx or xBx						
tsu	Set-up Time HIGH or LOW		2	_	2	_	ns
	xAx or xBx to x LEAB or x LEBA						
t H	Hold Time HIGH or LOW		2	_	2	_	ns
	xAx or xBx to x LEAB or x LEBA						
tw	xLEAB or xLEBA Pulse Width LOW		4	_	4	_	ns
tsk(o)	Output Skew ⁽³⁾		_	0.5	_	0.5	ns

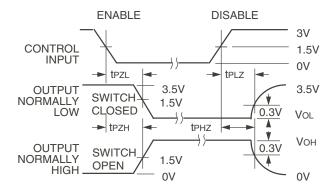
- 1. See test circuit and waveforms.
- 3. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.


TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-up, Hold, and Release Times

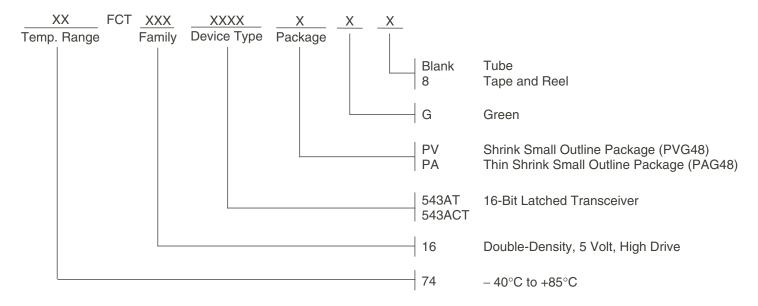

Propagation Delay


SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

- CL = Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZouT of the Pulse Generator.



Enable and Disable Times

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tr \leq 2.5ns; tr \leq 2.5ns.

ORDERING INFORMATION

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
Α	74FCT16543ATPAG	PAG56	TSSOP	I
	74FCT16543ATPAG8	PAG56	TSSOP	I
	74FCT16543ATPVG	PVG56	SSOP	I
	74FCT16543ATPVG8	PVG56	SSOP	I
С	74FCT16543CTPAG	PAG56	TSSOP	I
	74FCT16543CTPAG8	PAG56	TSSOP	I
	74FCT16543CTPVG	PVG56	SSOP	I
	74FCT16543CTPVG8	PVG56	SSOP	Ī

Datasheet Document History

09/28/2009 Updated the ordering information by removing the "IDT" notation and non RoHS part. Pg. 7

Added table under pin configuration diagram with detailed package information. Updated the ordering information 07/31/2017 Pg. 1, 2, 5, 7

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transceivers category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

74LS645N PI74LVCC3245AS 5962-8968201LA 5962-7802301Q2A TC74VCX164245(EL,F MC74LCX245MNTWG
TC7WPB8306L8X,LF(S MM74HC245AMTCX 74LVX245MTC 74ALVC16245MTDX 74LCXR162245MTX 74VCX164245MTDX
74VHC245M 74VHC245MX FXL2TD245L10X 74LVC1T45GM,115 74LVC245ADTR2G TC74AC245P(F) 74LVT245BBT20-13
CD74ACT245M 74AHC245D.112 SN74LVCH16952ADGGR CY74FCT16245TPVCT 74AHCT245PW.118 74LV245DB.118
74LV245D.112 74LV245PW.112 74LVC2245APW.112 74LVCH245AD.112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R
74LVCR162245ZQLR SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N
MC100EP16DTR2G 5962-9221403MRA 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG MAX22088GTG+ 74HC646N
MAX9320EUA 74AVC8T245PW,118 TC7QPB9306FT(EL) SY88808LMH 74LVCH2T45DC-Q100H