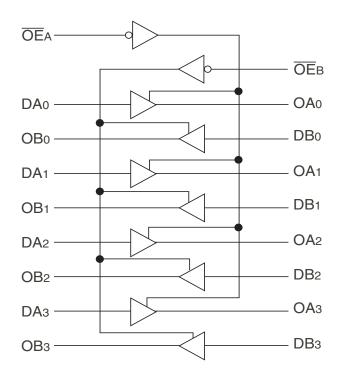


FAST CMOS OCTAL BUFFER/LINE DRIVER

IDT74FCT2244AT/CT

FEATURES:

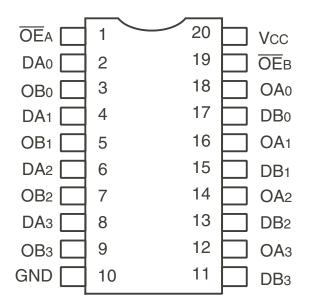

- · A and C grades
- Low input and output leakage ≤1µA (max.)
- · CMOS power levels
- True TTL input and output compatibility:
 - VOH = 3.3V (typ.)
 - -VOL = 0.3V (typ.)
- · Meets or exceeds JEDEC standard 18 specifications
- · Resistor outputs (-15mA IOH, 12mA IOL)
- · Reduced system switching noise
- · Available in SOIC and QSOP packages

DESCRIPTION:

The IDT octal buffer/line driver is built using an advanced dual metal CMOS technology. The FCT2244T is designed to be employed as a memory and address driver, clock driver, and bus-oriented transmitter/receiver which provides improved board density.

The FCT2244T has balanced output drive with current limiting resistors. This offers low ground bounce, minimal undershoot, and controlled output fall times, reducing the need for external series terminating resistors. The FCT2244T is a plug-in replacement for the FCT244T.

FUNCTIONAL BLOCK DIAGRAM



IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

NOVEMBER 2016

PIN CONFIGURATION

SOIC / QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7	٧
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-60 to +120	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Inputs and Vcc terminals only.
- 3. Output and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	pF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description	
ŌĒA, ŌĒB	3-State Output Enable Inputs (Active LOW)	
Dxx	Inputs	
Охх	Outputs	

FUNCTION TABLE(1)

	Inputs		
ŌĒA	ŌE B	D	Outputs
L	L	L	L
L	L	Н	Н
Н	Н	Х	Z

NOTE:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, VCC = $5.0V \pm 5\%$

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		_	_	0.8	V
lih	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V	_	_	±1	μA
lıL	Input LOW Current ⁽⁴⁾	Vcc = Max.	VI = 0.5V	_	_	±1	μA
lozh	High Impedance Output Current	Vcc = Max.	VI = 2.7V	_	_	±1	μΑ
lozl	(3-State Output Pins)(4)		VI = 0.5V	_	_	±1	
lı	Input HIGH Current ⁽⁴⁾	Vcc = Max., Vi = Vcc (Max.)		_	_	±1	μA
Vik	Clamp Diode Voltage	VCC = Min., IIN = -18mA		_	-0.7	-1.2	V
VH	Input Hysteresis	_		_	200	_	mV
Icc	Quiescent Power Supply Current	Vcc = Max. Vin = GND or Vcc		_	0.01	1	mA

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
IODL	Output LOW Current	$VCC = 5V$, $VIN = VIH or VIL$, $VOUT = 1.5V^{(3)}$		16	48	_	mA
lodh	Output HIGH Current	$VCC = 5V$, $VIN = VIH or VIL$, $VOUT = 1.5V^{(3)}$		-16	-48	_	mA
Vон	Output HIGH Voltage	Vcc = Min	IOH = -15mA	2.4	3.3	_	V
		VIN = VIH or VIL					
Vol	Output LOW Voltage	Vcc = Min	IoL = 12mA	_	0.3	0.5	V
		VIN = VIH or VIL					

NOTES:

- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
- 4. The test limit for this parameter is $\pm 5\mu A$ at TA = -55°C.

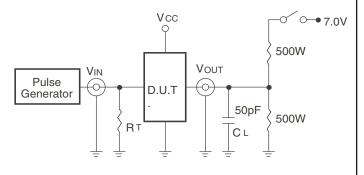
POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Condition	ons ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
∆lcc	Quiescent Power Supply Current TTL Inputs HIGH	$Vcc = Max.$ $Vin = 3.4V^{(3)}$		_	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OEA or OEB = GND One Input Toggling	VIN = VCC VIN = GND		0.06	0.12	mA/ MHz
lc	Total Power Supply Current ⁽⁶⁾	50% Duty Cycle Vcc = Max. Outputs Open fi = 10MHz	VIN = VCC VIN = GND	_	0.6	2.2	mA
		50% Duty Cycle OEA or OEB = GND One Bit Toggling	VIN = 3.4V VIN = GND	_	0.9	3.2	
		Vcc = Max. Outputs Open fi = 2.5MHz	VIN = VCC VIN = GND	_	1.2	3.4(5)	
		50% Duty Cycle ОЕа or ОЕв = GND Four Bits Toggling	VIN = 3.4V VIN = GND	_	3.2	11.4 ⁽⁵⁾	

NOTES:

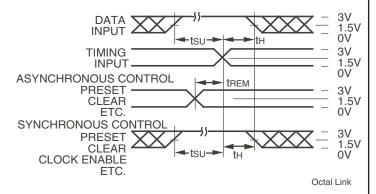
- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of Δ Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2+ fiNi)$
 - Icc = Quiescent Current
 - $\Delta \text{Icc}=$ Power Supply Current for a TTL High Input (Vin = 3.4V) DH = Duty Cycle for TTL Inputs High

 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - fi = Output Frequency
 - Ni = Number of Outputs at fi
- All currents are in milliamps and all frequencies are in megahertz.

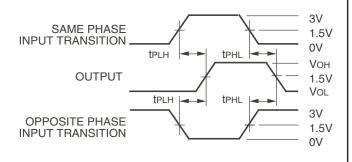

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			74FCT	2244AT	74FCT	2244CT	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH	Propagation Delay	CL = 50pF	1.5	4.8	1.5	4.1	ns
tPHL	Dx to Ox	$RL = 500\Omega$					
tpzh	Output Enable Time		1.5	6.2	1.5	5.8	ns
tpzl							
tphz	Output Disable Time		1.5	5.6	1.5	5.2	ns
tPLZ							

NOTES:


- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.

TEST CIRCUITS AND WAVEFORMS

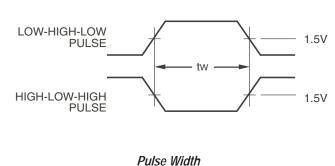


Test Circuits for All Outputs

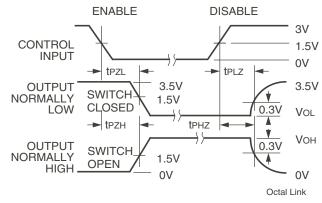
Octal Link

Set-Up, Hold, and Release Times

Propagation Delay


SWITCH POSITION

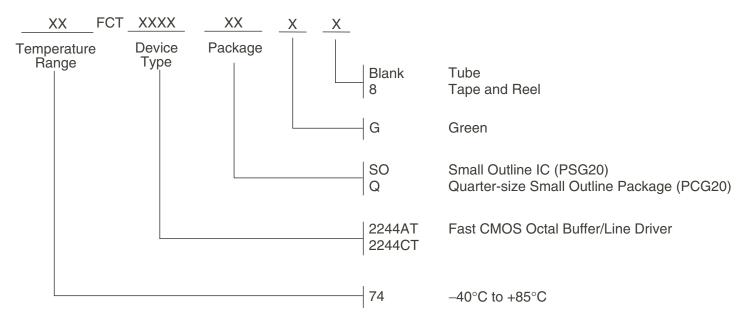
Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open


DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

Octal Link


Enable and Disable Times

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

Octal Link

ORDERING INFORMATION

Datasheet Document History

09/28/2009 Pg. 6 Updated the ordering information by removing the "IDT" notation and non RoHS part.

09/26/2011 Pg. 2,6 Correct Outputs in Function Table. Updated ordering information to include tube or tray and tape & reel.

11/26/2016 Pg. 6 Updated ordering information diagram temperature symbol, removed tray and created Green option in greater detail.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE. OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP NLU1GT126CMUTCG PI74FCT3244L MC74HCT365ADTR2G Le87401NQC

Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7

CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G 74HCT126T14-13 NL17SH125P5T5G

NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG

74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG

NLX2G06AMUTCG NLU2G17AMUTCG LE87100NQC LE87100NQCT LE87285NQC LE87285NQCT LE87290YQCT LE87511NQCT LE87557NQCT LE87557NQCT LE87614MQC LE87614MQCT LE87286NQCT