BIDIRECTIONAL

TRANSCEIVER

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, Normal Range
- $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V , Extended Range
- CMOS power levels ($0.4 \mu \mathrm{~W}$ typ. static)
- Rail-to-Rail output swing for increased noise margin
- Available in QSOP and TSSOP packages

DESCRIPTION:

The FCT3245/A octal transceivers are built using advanced dual metal CMOS technology. These high-speed, low-power transceivers are ideal for asynchronous communication between two buses (A and B). The direction control pin (DIR) controls the direction of data flow. The output enable pin $(\overline{\mathrm{OE}})$ overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.

The FCT3245/A has series current limiting resistors. These offer low ground bounce, minimal undershoot, and controlled output fall timesreducing the need for external series terminating resistors.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

QSOP/ TSSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM $^{(3)}$	Terminal Voltage with Respectto GND	-0.5 to +7	V
VTERM $^{(4)}$	Terminal Voltage with Respect to GND	-0.5 to $\mathrm{VcC}+0.5$	V
TstG	Storage Temperature	$-65 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-60 to +60	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. Input terminals.
4. Outputs and I/O terminals.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	3.5	6	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	4	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
$\bar{O} \bar{E}$	3-State Output Enable Inputs (Active LOW)
DIR	Direction Control Output
Ax	Side A Inputs or 3-State Outputs
Bx	Side B Inputs or 3-State Outputs

FUNCTION TABLE(1)

Inputs		
$\overline{0} \bar{E}$	DIR	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	HighZ State

NOTE:

1. $\mathrm{H}=$ HIGH Voltage Level

X = Don't Care
L = LOW Voltage Level
Z = High Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level (Input pins)	Guaranteed Logic HIGH Level		2	-	5.5	V
	Input HIGH Level (I/O pins)			2	-	Vcc+0.5	
VIL	InputLOW Level (Input and I/O pins)	Guaranteed Logic LOW Level		-0.5	-	0.8	V
11 H	Input HIGH Current (Input pins)	Vcc $=$ Max.	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
	Input HIGH Current (I/O pins)		V I $=\mathrm{Vcc}$	-	-	± 1	
IIL	InputLOW Current(Inputpins)		$\mathrm{V}_{\mathrm{I}}=$ GND	-	-	± 1	
	Input LOW Current (I/O pins)		$\mathrm{V}_{\mathrm{I}}=$ GND	-	-	± 1	
IozH	High Impedance Output Current (3-State Outputpins)	$\mathrm{Vcc}=$ Max.	Vo $=$ Vcc	-	-	± 1	$\mu \mathrm{A}$
Iozl			Vo = GND	-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{IIN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
Iodi	Output HIGH Current	Vcc $=3.3 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or $\mathrm{VIL}, \mathrm{Vo}=1.5 \mathrm{~V}{ }^{(3)}$		-36	-60	-110	mA
IODL	OutputLOW Current	$\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{Vo}=1.5 \mathrm{~V}{ }^{(3)}$		50	90	200	mA
VoH	Output HIGH Voltage	$\begin{aligned} & \text { VCC }=\operatorname{Min} . \\ & \text { VIN }^{2} \text { VIH or } \mathrm{VIL} \end{aligned}$	$1 \mathrm{OH}=-0.1 \mathrm{~mA}$	Vcc-0.2	-	-	V
			ІОН $=-3 \mathrm{~mA}$	2.4	3	-	
		$\begin{aligned} & \mathrm{VCC}=3 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{VIH} \text { or } \mathrm{VIL} \end{aligned}$	$\mathrm{IOH}=-8 \mathrm{~mA}$	$2.4{ }^{(5)}$	3	-	
Vol	OutputLOW Voltage	$\begin{aligned} & \text { VCC }=\mathrm{Min} . \\ & \mathrm{VIN}_{\mathrm{IN}}=\mathrm{VIH} \text { or } \mathrm{VIL} \end{aligned}$	$\mathrm{loL}=0.1 \mathrm{~mA}$	-	-	0.2	V
			$\mathrm{lOL}=16 \mathrm{~mA}$	-	0.2	0.4	
			$\mathrm{loL}=24 \mathrm{~mA}$	-	0.3	0.55	
		$\begin{aligned} & \text { VCC }=3 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{VIH} \text { or } \mathrm{VIL} \end{aligned}$	$\mathrm{loL}=24 \mathrm{~mA}$		0.3	0.5	
los	Short Circuit Current ${ }^{(4)}$	Vcc $=$ Max., Vo = GND ${ }^{(3)}$		-60	-135	-240	mA
VH	Input Hysteresis	-		-	150	-	mV
ICCL ICCH IcCZ	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc		-	0.1	10	$\mu \mathrm{A}$

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient and maximum loading.
3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
4. This parameter is guaranteed but not tested.
5. Voн $=\mathrm{Vcc}-0.6 \mathrm{~V}$ at rated current.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ.(2)	Max.	Unit
ICC	Quiescent Power Supply Current	$\mathrm{Vcc}=$ Max.	$\mathrm{VIN}=\mathrm{Vcc}-0.6 \mathrm{~V}$	-	2	30	$\mu \mathrm{A}$
ICCD	Dynamic Power Supply Current(4)	Vcc $=$ Max. Outputs Open $\overline{\mathrm{OE}}=\mathrm{DIR}=\mathrm{GND}$ One Input Toggling 50\% Duty Cycle	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{VCC} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$	-	60	85	$\begin{gathered} \mu \mathrm{Al} \\ \mathrm{MHz} \end{gathered}$
Ic	Total Power Supply Current(6)	Vcc $=$ Max. Outputs Open $\mathrm{fl}_{1}=10 \mathrm{MHz}$	$\begin{aligned} & \text { VIN }=\text { VCC } \\ & \text { VIN }=\text { GND } \end{aligned}$	-	0.6	0.9	mA
		50\% Duty Cycle $\overline{\mathrm{OE}}=\mathrm{DIR}=\mathrm{GND}$ One Bit Toggling	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC}-0.6 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.6	0.9	
		Vcc $=$ Max. Outputs Open $f_{\mathrm{I}}=2.5 \mathrm{MHz}$	$\begin{aligned} & \text { Vin }=\text { Vcc } \\ & \text { ViN }=G N D \end{aligned}$	-	1.2	1.7(5)	
		50\% Duty Cycle $\overline{\mathrm{OE}}=\mathrm{DIR}=\mathrm{GND}$ Eight Bits Toggling	$\begin{aligned} & \text { VIN }=\text { VCC }-0.6 \mathrm{~V} \\ & \text { VIN }=\text { GND } \end{aligned}$	-	1.2	1.8(5)	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input. All other inputs at Vcc or GND.
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of $\Delta \mathrm{Icc}$ formula. These limits are guaranteed but not tested.
6. IC $=$ IQUIESCENT + IInputs + Idynamic
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICC} D \mathrm{DNT}+\mathrm{ICCD}(\mathrm{fcPNCP} / 2+\mathrm{fiNi})$
Icc = Quiescent Current (Icc, Icch, and Iccz)
$\Delta \mathrm{lcc}=$ Power Supply Current for a TTL High Input
DH = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
$\mathrm{fCP}=$ Clock Frequency for register devices (zero for non-register devices)
NCP = Number of clock inputs at fCP
fi = Input Frequency
$\mathrm{Ni}=$ Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE ${ }^{(1)}$

Symbol	Parameter	Condition ${ }^{(2)}$	74FCT3245		74FCT3245A		Unit
			Min. ${ }^{(3)}$	Max.	Min. ${ }^{(3)}$	Max.	
tPLH tPH	Propagation Delay A to B, B to A	$\begin{aligned} C L & =50 \mathrm{pF} \\ R L & =500 \Omega \end{aligned}$	1.5	7	1.5	4.6	ns
$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { tPZH } \\ \text { tPZ } \end{array}$	OutputEnable Time $\overline{\mathrm{OE}}$ to A or B		1.5	9.5	1.5	6.2	ns
$\begin{array}{\|l\|l\|} \hline \mathrm{tPHz} \\ \mathrm{tPLZ} \end{array}$	OutputDisable Time $\overline{\mathrm{OE}}$ to A or B		1.5	7.5	1.5	5	ns
	OutputEnable Time DIR to A or $\mathrm{B}^{(4)}$		1.5	9.5	1.5	6.2	ns
tPHZ tPLZ	OutputDisable Time DIR to A or $B^{(4)}$		1.5	7.5	1.5	5	ns

NOTES:

1. Propagation Delays and Enable/Disable times are with $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, Normal Range. For $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6V, Extended Range, all Propagation Delays and Enable/ Disable times should be degraded by 20%.
2. See test circuit and waveforms.
3. Minimum limits are guaranteed but not tested on Propagation Delays.
4. This parameter is guaranteed but not tested.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-Up, Hold, and Release Times

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	6 V
Disable High Enable High	GND
All Other Tests	Open

DEFINITIONS:
$C L=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz} ; \mathrm{Zo} \leq 50 \Omega$; $\mathrm{tr} \leq 2.5 \mathrm{~ns} ; \mathrm{tr} \leq 2.5 \mathrm{~ns}$.
3. If Vcc is below 3 V , input voltage swings should be adjusted not to exceed Vcc .

ORDERING INFORMATION

Datasheet Document History

$10 / 03 / 2009$	Pg. 6	Updated the ordering information by removing the "IDT" notation and non RoHS part.
$05 / 10 / 2018$	Pg. 6	Updated the ordering information by adding Tape and Reel.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
74LS645N PI74LVCC3245AS 5962-8968201LA 5962-7802301Q2A TC74VCX164245(EL,F MC74LCX245MNTWG
TC7WPB8306L8X,LF(S MM74HC245AMTCX 74LVX245MTC 74ALVC16245MTDX 74LCXR162245MTX 74VCX164245MTDX 74VHC245M 74VHC245MX FXL2TD245L10X 74LVC1T45GM,115 74LVC245ADTR2G TC74AC245P(F) 74LVT245BBT20-13

CD74ACT245M 74AHC245D.112 SN74LVCH16952ADGGR CY74FCT16245TPVCT 74AHCT245PW.118 74LV245DB. 118
74LV245D. 112 74LV245PW. 112 74LVC2245APW. 112 74LVCH245AD. 112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R
74LVCR162245ZQLR SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N
MC100EP16DTR2G 5962-9221403MRA 74ALVC164245PAG 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG
MAX22088GTG+ 74HC646N MAX9320EUA 74AVC8T245PW,118 TC7QPB9306FT(EL) SY88808LMH

