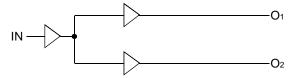
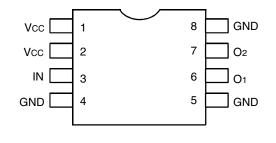


3.3V CMOS 1-TO-2 CLOCK DRIVER

FEATURES:


- Advanced CMOS Technology
- Guaranteed low skew < 100ps (max.)
- Very low duty cycle distortion< 350ps (max.)
- High speed propagation delay< 3ns (max.)
- · Very low CMOS power levels
- TTL compatible inputs and outputs
- 1:2 fanout
- Maximum output rise and fall time < 1ns (max.)
- · Low input capacitance: 3pF typical
- VCC = $3.3V \pm 0.3V$
- Inputs can be driven from 3.3V or 5V components
- Operating frequency up to 166MHz
- Available in SOIC package


FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The FCT38072 is a 3.3V clock driver built using advanced CMOS technology. This low skew clock driver offers 1:2 fanout. The large fanout from a single input reduces loading on the preceding driver and provides an efficient clock distribution network. Multiple power and grounds reduce noise. Typical applications are clock and signal distribution.

PINCONFIGURATION

SOIC TOP VIEW

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
Vcc	Input Power Supply Voltage	-0.5 to +4.6	V
Vi	InputVoltage	-0.5 to +5.5	V
Vo	Output Voltage	-0.5 to Vcc+0.5	V
ΤJ	Junction Temperature	150	°C
Tstg	StorageTemperature	-65 to +165	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

CINInput Capacitance $VIN = 0V$ 34pFCOUTOutput CapacitanceVOUT = 0V6pF	Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
COUT Output Capacitance VOUT = 0V — 6 pF	Cin	Input Capacitance	VIN = 0V	3	4	pF
	Соит	Output Capacitance	VOUT = 0V	—	6	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
IN	Input
Ох	Outputs

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	TestCor	ditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
lcco	Quiescent Power Supply Current	VCC = Max.	VIN = GND or VCC	—	0.1	30	μA
Δlcc	Power Supply Current per Input HIGH	VCC = Max.	VIN = VCC - 0.6V	-	45	300	μA
ICCD	Dynamic Power Supply Current	Vcc = Max.	VIN = VCC	-	80	120	µA/MHz
	per Output ⁽³⁾	CL = 15pF	VIN = GND				
		All Outputs Toggling					
lc	Total Power Supply Current ⁽⁴⁾	Vcc = Max.	VIN = VCC		60	90	
		CL = 15pF	VIN = GND				
		All Outputs Toggling	VIN = VCC -0.6V		60	90	
		fi = 133MHz	VIN = GND				mA
		Vcc = Max.	VIN = VCC	_	85	115	
		CL = 15pF	VIN = GND				
		All Outputs Toggling	VIN = VCC -0.6V	_	85	115	1
		fi = 166MHz	Vin = GND				

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

4. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD$ (fi)

Icc = Quiescent Current

- ΔIcc = Power Supply Current for a TTL High Input (VIN = Vcc -0.6V)
- $\mathsf{D}\mathsf{H}$ = Duty Cycle for TTL Inputs High

 $\mathsf{N}\mathsf{T}$ = Number of TTL Inputs at $\mathsf{D}\mathsf{H}$

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fi = Input Frequency

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified

Industrial: TA = -40° C to $+85^{\circ}$ C, Vcc = 3.3V ± 0.3 V

Symbol	Parameter	Test Conditions ⁽¹⁾	Test Conditions ⁽¹⁾		Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level			2	_	5.5	V
Vil	Input LOW Level			-0.5	_	0.8	V
Іін	Input HIGH Current	Vcc = Max.	VI = 5.5V	_	_	±1	μA
lil	Input LOW Current	Vcc = Max.	VI = GND	_	_	±1	1
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18m	Vcc = Min., IIN = -18mA		-0.7	-1.2	V
Iodh	Output HIGH Current	VCC = 3.3V, VIN = VIH	$VCC = 3.3V$, $VIN = VIH \text{ or } VIL$, $VO = 1.5V^{(3,4)}$		-75	-180	mA
IODL	Output LOW Current	VCC = 3.3V, VIN = VIH	$VCC = 3.3V, VIN = VIH \text{ or } VIL, VO = 1.5V^{(3,4)}$		92	200	mA
los	Short Circuit Current	Vcc = Max., Vo = GN	$VCC = Max., VO = GND^{(3,4)}$		-135	-240	mA
Vон	Output HIGH Voltage	Vcc = Min.	Iон = –12mA	2.4 ⁽⁵⁾	3	_	V
		VIN = VIH or VIL	Іон = –100µА	Vcc-0.2	_	_	
Vol	Output LOW Voltage	Vcc = Min.	IOL = 12mA	_	0.3	0.5	V
		VIN = VIH or VIL	Iol = 100μA	_	_	0.2	

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 3.3, 25°C ambient.

3. This parameter is guaranteed but not tested.

4. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

5. VoH = Vcc - 0.6V at rated current.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (3,4)

Symbol	Parameter	Conditions ^(1,8)	Min. ⁽²⁾	Max.	Unit
t PLH	Propagation Delay	CL = 15pF	0.5	3	ns
t PHL		f ≤166MHz			
tR	Output Rise Time (0.8V to 2V)		—	1	ns
tF	Output Fall Time (2V to 0.8V)		—	1	ns
tsk(0)	Same device output pin-to-pin skew ⁽⁵⁾		—	100	ps
tsk(P)	Pulse skew ⁽⁶⁾		—	350	ps
tsk(PP)	Part to part skew ⁽⁷⁾		_	550	ps
fMAX	Input Frequency		_	166	MHz

NOTES:

1. See test circuits and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. tPLH, tPHL, tsk(P), and tsk(o) are production tested. All other parameters guaranteed but not production tested.

4. Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature and process parameters. These propagation delay limits do not imply skew. 5. Skew measured between all outputs under identical transitions and load conditions.

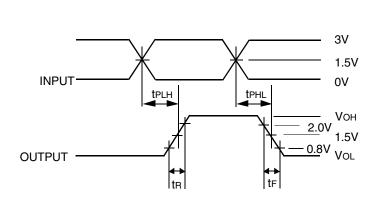
6. Skew measured is difference between propagation delay times tPHL and tPLH of same output under identical load conditions.

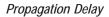
7. Part to part skew for all outputs given identical transitions and load conditions at identical Vcc levels and temperature.

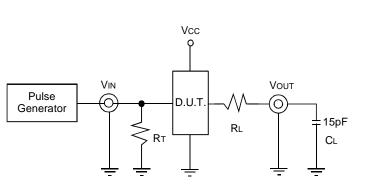
8. Airflow of 1m/s is recommended for frequencies above 133MHz.

TEST CIRCUITS

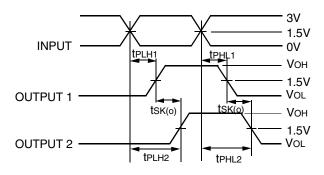
TEST CONDITIONS

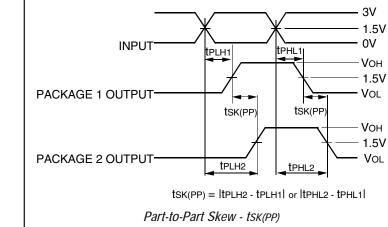

TEST WAVEFORMS


Symbol	Symbol Vcc = 3.3V ±0.3V	
CL	15	pF
RL	33	Ω
Rt	Zout of pulse generator	Ω
tR / tF 1 (0V to 3V or 3V to 0V)		ns

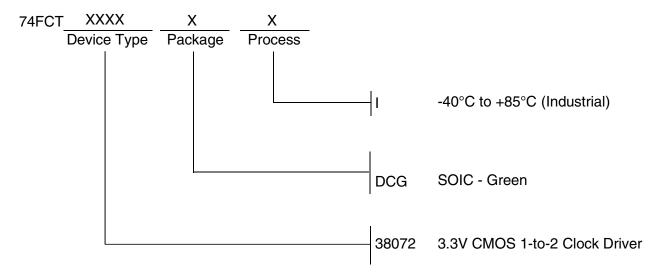

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.


RT = Termination resistance: should be equal to ZouT of the Pulse Generator. tr / tr = Rise/Fall time of the input stimulus from the Pulse Generator.



tSK(o) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|



Part-to-Part Skew is for the same package and speed grade.

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Drivers & Distribution category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C 6ES7212-1AF40-0XB0 EC4P-221-MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI