1-TO-10 CLOCK DRIVER

DESCRIPTION:

TheFCT3807/A3.3V clock driver is builtusing advanced dual metal CMOS technology. This low skew clock driveroffers 1:10 fanout. The largefanoutfrom a single inputreduces loading on the preceding driver and provides an efficient clock distribution network. TheFCT3807/A offers low capacitance inputs with hysteresis for improved noise margins. Multiple power and grounds reduce noise. Typical applications are clock and signal distribution.

FUNCTIONALBLOCKDIAGRAM

PINCONFIGURATION

SOICI SSOPI QSOP TOP VIEW

ABSOLUTEMAXIMUMRATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respectto GND	-0.5 to +4.6	V
VTERM $^{(3)}$	Terminal Voltage with Respectto GND	-0.5 to +7	V
VTERM $^{(4)}$	Terminal Voltage with Respect to GND	-0.5 to Vcc +0.5	V
TstG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	DC OutputCurrent	-60 to +60	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. Input terminals.
4. Outputs and I/O terminals.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	InputCapacitance	VIN $=0 \mathrm{~V}$	4.5	6	pF
Cout	OutputCapacitance	Vout $=0 \mathrm{~V}$	5.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PINDESCRIPTION

Pin Names	Description
IN	Clock Inputs
Ox	ClockOutputs

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	TestConditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lc}$ c	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=\mathrm{Vcc}-0.6 \mathrm{~V}(3) \end{aligned}$		-	10	30	$\mu \mathrm{A}$
ICCD	Dynamic Power Supply Current ${ }^{(4)}$	Vcc $=$ Max. Inputtoggling 50\% Duty Cycle Outputs Open	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.31	0.45	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$
Ic	Total Power Supply Current ${ }^{(6)}$	Vcc = Max. Inputtoggling 50\% Duty Cycle Outputs Open $\mathrm{fi}=50 \mathrm{MHz}$	$\begin{aligned} & \hline \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \\ & \hline \mathrm{VIN}=\mathrm{VCC}-0.6 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	15.5	22.8	mA

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input ($\mathrm{V} \operatorname{IN}=\mathrm{Vcc}-0.6 \mathrm{~V}$); all other inputs at Vcc or GND.
4. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
5. Values for these conditions are examples of the Ic formula. These limits are guaranteed but not tested.
6. IC = IQUIESCENT + IINPUTS + IDYNAMIC
$I C=I C C+\Delta I C C D H N T+I C C D \quad(f i)$
Icc = Quiescent Current (IcCL, Icch and Iccz)
$\Delta \mathrm{lcc}=$ Power Supply Current for a TTL High Input (VIn $=$ Vcc -0.6V)
DH = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{f}_{\mathrm{i}}=$ Input Frequency
All currents are in milliamps and all frequencies are in megahertz.

DCELECTRICALCHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified
Commercial: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Industrial: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} C \mathrm{C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Symbol	Parameter	TestConditions ${ }^{(1)}$		Min.	Typ.	Max.	Unit
VIH	Input HIGH Level (Input pins)	Guaranteed Logic HIGH Level		2	-	5.5	V
	Input HIGH Level (I/O pins)			2	-	$\mathrm{Vcc}+0.5$	
VIL	Input LOW Level (Input and I/O pins)	GuaranteedLogic LOWLevel		-0.5	-	0.8	V
IH	Input HIGH Current (Input pins)	Vcc = Max.	$\mathrm{VI}=5.5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
	Input HIGH Current (I/O pins)		V I $=\mathrm{Vcc}$	-	-	± 1	
IIL	InputLOW Current(Inputpins)	Vcc $=$ Max.	$\mathrm{V}_{\mathrm{I}}=$ GND	-	-	± 1	
	Input LOW Current (1/O pins)		$\mathrm{V}_{1}=$ GND	-	-	± 1	
IozH	High Impedence OutputCurrent (3-State OutputPins)	$\mathrm{Vcc}=$ Max.	$\mathrm{Vo}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
Iozl			Vo = GND	-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{VcC}=\mathrm{Min} ., \mathrm{IIN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
IODH	Output HIGH Current	$\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{Vo}=1.5 \mathrm{~V} \mathrm{~V}^{(3)}$		-36	-60	-110	mA
IODL	OutputLOWCurrent	$\mathrm{VCC}=3.3 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{Vo}=1.5 \mathrm{~V}{ }^{(3)}$		50	90	200	mA
VoH	Output HIGH Voltage	$\begin{aligned} & \text { VCC }=\operatorname{Min} . \\ & \mathrm{VIN}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{VIL}^{2} \end{aligned}$	$1 \mathrm{OH}=-0.1 \mathrm{~mA}$	Vcc-0.2	-	-	V
			$\mathrm{IOH}=-8 \mathrm{~mA}$	$2.4{ }^{(5)}$	3	-	
Vol	OutputLOW Voltage	$\begin{aligned} & \text { VCC }=\mathrm{Min} . \\ & \mathrm{VIN}^{2}=\mathrm{V} \mathrm{H} \text { or } \mathrm{VIL} \end{aligned}$	$\mathrm{IOL}=0.1 \mathrm{~mA}$	-	-	0.2	V
			$1 \mathrm{OL}=16 \mathrm{~mA}$	-	0.2	0.4	
			$1 \mathrm{OL}=24 \mathrm{~mA}$	-	0.3	0.5	
IofF	InputPowerOffLeakage	$\mathrm{VcC}=0 \mathrm{~V}, \mathrm{VIN}=4.5 \mathrm{~V}$		-	-	± 1	$\mu \mathrm{A}$
los	ShortCircuitCurrent ${ }^{(4)}$	$\mathrm{Vcc}=\mathrm{Max} ., \mathrm{Vo}=\mathrm{GND}^{(3)}$		-60	-135	-240	mA
VH	InputHysteresis	-		-	150	-	mV
$\begin{aligned} & \text { ICCL } \\ & \text { ICCH } \\ & \text { ICCZ } \\ & \hline \end{aligned}$	Quiescent Power Supply Current	$\begin{aligned} & \text { VCC }=\text { Max. } \\ & \text { VIN }=\text { GND or Vcc } \end{aligned}$		-	0.1	10	$\mu \mathrm{A}$

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. This parameter is guaranteed but not tested.
5. V он $=\mathrm{Vcc}-0.6 \mathrm{~V}$ at rated current.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE-COMMERCIAL $(3,4)$

Symbol	Parameter	Conditions ${ }^{(1)}$	FCT3807		FCT3807A		Unit	
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.		
$\begin{aligned} & \text { tPL } \\ & \text { tPHL } \end{aligned}$	PropagationDelay	50Ω to $\mathrm{Vcc} / 2$$\mathrm{CL}=10 \mathrm{pF}$(Seefigure 1)or $10 \Omega \mathrm{AC}$termination,$\mathrm{CL}=50 \mathrm{pF}$(Seefigure2)$\mathrm{f} \leq 100 \mathrm{MHz}$Outputsconnected ingroups oftwo	1.5	3.5	1.5	3	ns	
\mathbb{R}	Output Rise Time (0.8 to 2V)		-	1.5	-	1.5	ns	
tF	Output Fall Time (0.8to 2V)		-	1.5	-	1.5	ns	
tsk(0)	Output skew: skew between outputs of same package(same transition)		-	0.5	-	0.35	ns	
tsk(P)	Pulse skew: skew between opposite transitions of same output(\|tPHL-tPLH)		-	0.5	-	0.35	ns
tsk(${ }^{\text {(}}$	Package skew: skew between outputs of different packages at same power supply voltage, temperature, packagetypeandspeedgrade		-	0.9	-	0.65	ns	

Symbol	Parameter	Conditions ${ }^{(1)}$	FCT3807		FCT3807A		Unit	
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	PropagationDelay	$\begin{gathered} \mathrm{CL}=30 \mathrm{pF} \\ \mathrm{f} \leq 67 \mathrm{MHz} \\ \text { (Seefigure } 3 \text {) } \end{gathered}$	1.5	4.5	1.5	4	ns	
\mathbb{R}	Output Rise Time (0.8 to 2V)		-	1.5	-	1.5	ns	
tF	OutputFall Time (0.8to 2V)		-	1.5	-	1.5	ns	
tsk(0)	Output skew: skew between outputs of same package(same transition)		-	0.5	-	0.35	ns	
tSk(P)	Pulse skew: skew between opposite transitions of same output(\|tPHL--tPLH)		-	0.5	-	0.35	ns
tsk(T)	Package skew: skew between outputs ofdifferent packages at same power supply voltage, temperature, packagetype and speed grade		-	1	-	0.75	ns	

Symbol	Parameter	Conditions ${ }^{(1)}$	FCT3807		FCT3807A		Unit	
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay	$\begin{gathered} \hline \mathrm{CL}=50 \mathrm{pF} \\ \mathrm{f} \leq 40 \mathrm{MHz} \\ \text { (Seefigure4) } \end{gathered}$	1.5	4.8	1.5	4.3	ns	
\mathbb{R}	Output Rise Time (0.8 to 2V)		-	1.5	-	1.5	ns	
tF	OutputFall Time (0.8to 2V)		-	1.5	-	1.5	ns	
tsk(0)	Output skew: skew between outputs of same package(same transition)		-	0.5	-	0.35	ns	
tSk(P)	Pulse skew: skew between opposite transitions of sameoutput(\|tPHL--tPLㄴ)		-	0.5	-	0.35	ns
tsk(T)	Package skew: skew between outputs ofdifferent packages at same power supply voltage, temperature, package type and speed grade		-	1	-	0.75	ns	

NOTES:

1. See test circuits and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. tPLh, tPhL, tsk (t) are production tested. All other parameters guaranteed but not production tested.
4. Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature and process parameters. These propagation delay limits do not imply skew.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE-INDUSTRIAL(3,4)

Symbol	Parameter	Conditions ${ }^{(1)}$	FCT3807		FCT3807A		Unit	
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	PropagationDelay	50Ω to Vcc/2 $C L=10 \mathrm{pF}$ (Seefigure 1) or 50Ω AC termination, $C L=10 \mathrm{pF}$ (Seefigure 2) $\mathrm{f} \leq 100 \mathrm{MHz}$ Outputs connectedin groups oftwo	1.5	3.5	1.5	3	ns	
R	Output Rise Time (0.8 to 2V)		-	1.5	-	1.5	ns	
tF	Output Fall Time (0.8 to 2V)		-	1.5	-	1.5	ns	
tSk(0)	Outputskew: skew between outputs of same package (same transition)		-	0.6	-	0.45	ns	
tSK(P)	Pulse skew: skew between opposite transitions of sameoutput(\|tPHL--tPLH)		-	0.6	-	0.45	ns
tsk(T)	Package skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade		-	0.9	-	0.65	ns	

Symbol	Parameter	Conditions ${ }^{(1)}$	FCT3807		FCT3807A		Unit	
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPH } \end{aligned}$	PropagationDelay	$\begin{gathered} \hline \mathrm{CL}=30 \mathrm{pF} \\ \mathrm{f} \leq 67 \mathrm{MHz} \\ \text { (Seefigure } 3 \text {) } \end{gathered}$	1.5	4.5	1.5	4	ns	
R	Output Rise Time (0.8to 2 V)		-	1.5	-	1.5	ns	
tF	OutputFall Time (0.8to 2V)		-	1.5	-	1.5	ns	
tsk(0)	Outputskew: skew between outputs of same package (sametransition)		-	0.6	-	0.45	ns	
tSK(P)	Pulse skew: skew between opposite transitions of sameoutput(\|tPHL--tPLH)		-	0.6	-	0.45	ns
tsk(T)	Package skew: skew between outputs ofdifferent packages at same power supply voltage, temperature, package type and speed grade		-	1	-	0.75	ns	

Symbol	Parameter	Conditions ${ }^{(1)}$	FCT3807		FCT3807A		Unit	
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.		
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	PropagationDelay	$\begin{gathered} \mathrm{CL}=50 \mathrm{pF} \\ \mathrm{f} \leq 40 \mathrm{MHz} \\ \text { (Seefigure } 4 \text {) } \end{gathered}$	1.5	4.8	1.5	4.3	ns	
\mathbb{R}	Output Rise Time (0.8to 2 V)		-	1.5	-	1.5	ns	
tF	Output Fall Time (0.8to 2V)		-	1.5	-	1.5	ns	
tsk(0)	Outputskew: skew between outputs of same package (sametransition)		-	0.6	-	0.45	ns	
tSK(P)	Pulse skew: skew between opposite transitions of sameoutput(\|tPHL--tPLㄴ)		-	0.6	-	0.45	ns
tsk(T)	Package skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade		-	1	-	0.75	ns	

NOTES:

1. See test circuits and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. tPLh, tPhL, tsk(t) are production tested. All other parameters guaranteed but not production tested.
4. Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature and process parameters. These propagation delay limits do not imply skew.

TESTCIRCUITS

Figure 1. $Z o=50 \Omega$ to $V c c / 2, C L=10 p F$

Figure 2. $Z o=50 \Omega$ AC Termination, $C L=10 \mathrm{pF}$
The capacitor value for ac termination is determined by the operating frequency. For very low frequencies a higher capacitor value should be selected.

Figure 3. $C L=30 \mathrm{pF}$ Circuit

Figure 3. $C_{L}=50 \mathrm{pF}$ Circuit

ENABLEANDDISABLETIME SWITCHPOSITION

Test	Switch
Disable LOW Enable LOW	6 V
Disable HIGH Enable HIGH	GND

DEFINITIONS:

$C L=$ Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.

Figure 5. Enable and Disable Time Circuit

TESTWAVEFORMS

Package Delay

Pulse Skew - tSK(P)

Enable and Disable Times
NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
2. Pulse Generator for All Pulses: $\mathrm{f} \leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$

tSK $(0)=|t P L H 2-t P L H 1|$ or $|t P H L 2-t P H L 1|$
Output Skew - tsk(0)

tSK $(\mathrm{t})=|\mathrm{ItPLH} 2-\mathrm{tPLH} 1|$ or $\operatorname{ItPHL2}-\mathrm{tPHL1} \mid$
Package Skew - tsK(T)
Package 1 and Package 2 are same device type and speed grade

ORDERINGINFORMATION

REVISIONHISTORY

October 16,2014 Updated ordering information to include Tubes/Tape and Reel

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C 6ES7212-1AF40-0XB0 EC4P-221-MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI

