

3.3V CMOS 16-BIT IDT7 TRANSPARENT D-TYPE OBS LATCH WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O AND BUS-HOLD

IDT74LVCH16373A OBSOLETE PART

FEATURES:

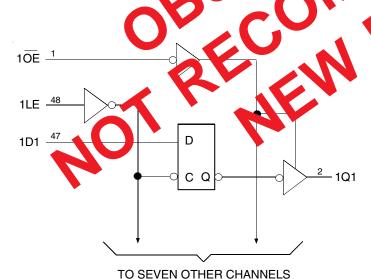
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4 w W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- · Available in TSSOP package

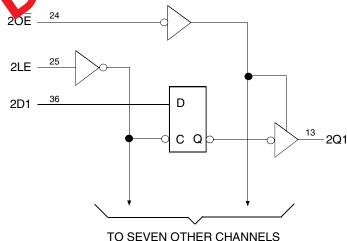
DRIVE FEATURES:

- · High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

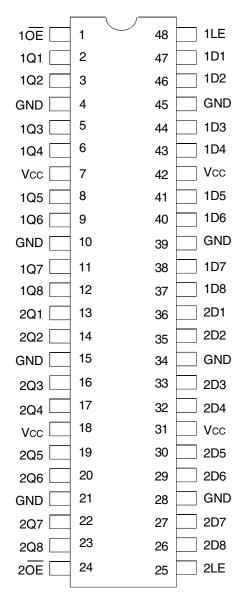
- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems


DESCRIPTION


The LVCH16373A 16-bit transparent D-type latch is built using advanced dual metal CMOS technology. This high-speed, low-power latch is ideal for temporary storage of data. The LVCH16373A can be used for implementing memory address latches, I/O ports, and bus drivers. The Output Enable and Latch Enable controls are organized to operate each device as two 8-bit latches or one 16-bit latch. Flow-threagy organization of signal pins simplifies lag ut. All inputs are designed withing teresis for improved noise margin

All pins of the Liv SH2 3373A can be drive arrown. There is 3V or 5V devices. This feature is twisting use of the device as a translator in a mixed 3.3V/5V supply an tell

The LC CH \$373A has "bus cold" which retains the inputs' last state whenever the input goes of a light cold and eliminates the measure of the public dp/down resistors.


FUNCTIONAL BLOCK DIL GI AM

PIN CONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	-65 to +150	°C
Іоит	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
хDх	Data Inputs ⁽¹⁾	
xLE	Latch Enable Input	
xŌĒ	Output Enable Inputs (Active LOW)	
хОх	3-State Outputs	

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE(1)

	Outputs		
хDх	xLE	хŌĒ	хОх
Н	Н	L	Н
L	Н	L	L
Х	L	L	Q ⁽²⁾
Х	Χ	Н	Z

NOTES:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High-Impedance
- 2. Output level before the indicated steady-state input conditions were established.

IDT74LVCH16373A 3.3VCMOS16-BITTRANSPARENT D-TYPE LATCH

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
Іін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μΑ
lıL							
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN or VO \le 5.5V$		_	_	±50	μΑ
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA	Vcc = 2.3V, Iin = -18mA		-0.7	-1.2	V
VH	Input Hysteresis	VCC = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	VCC = 3.6V	VIN = GND or VCC	_	_	10	μΑ
ICCH ICCZ			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other		_	_	500	μΑ

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	- 75	_	_	μΑ
IBHL			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μΑ
IBHL			VI = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	±500	μΑ
Івньо							

NOTES:

- 1. Pins with Bus-Hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

IDT74LVCH16373A 3.3VCMOS16-BITTRANSPARENTD-TYPE LATCH

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		VCC = 3V	IOL = 24mA	_	0.55	

NOTF:

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, Ta = 25°C

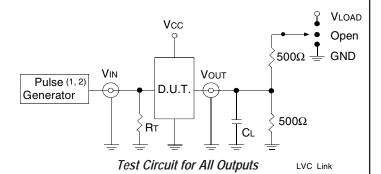
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Latch Outputs enabled	CL = 0pF, f = 10Mhz	39	pF
CPD	Power Dissipation Capacitance per Latch Outputs disabled		6	

SWITCHING CHARACTERISTICS(1)

		Vcc =	= 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tplH	Propagation Delay	_	4.9	1.6	4.2	ns
tphL tphL	xDx to xQx					
tplH	Propagation Delay	_	5.3	2.1	4.6	ns
tphL tphL	xLE to xQx					
tpzh	Output Enable Time	_	5.7	1.3	4.7	ns
tpzL	xOE to xQx					
tphz	Output Disable Time	_	6.3	2.5	5.9	ns
tplz	xOE to xQx					
tsu	Set-up Time, data before LE↓HIGH or LOW	1.7	_	1.7	_	ns
tH	Hold Time, data after LE↓ HIGH or LOW	1.2	_	1.2	_	ns
tw	Pulse Width xLE HIGH	3.3	_	3.3	_	ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	500	ps

NOTES:

- 1. See TEST CIRCUITS AND WAVEFORMS. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.


^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C.

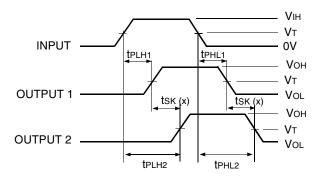
TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc / 2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

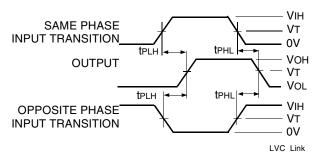

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

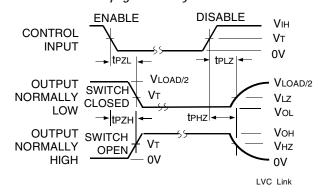
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2.5ns; tr \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

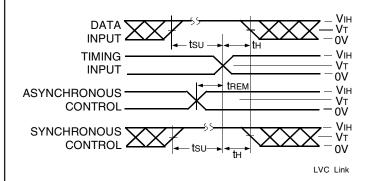

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

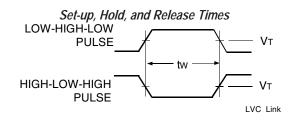
Output Chart touch


Output Skew - tsk(x)

NOTES: 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

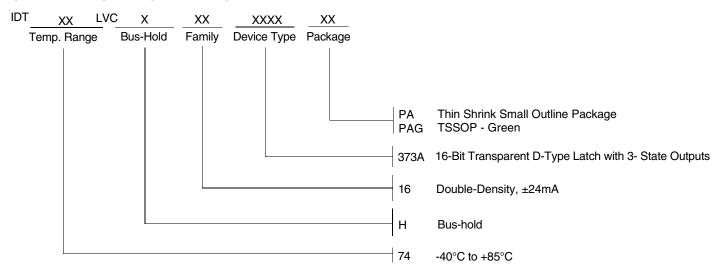

Propagation Delay



Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


Pulse Width

LVC Link

IDT74LVCH16373A 3.3VCMOS16-BITTRANSPARENTD-TYPE LATCH

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

07/13/2015 PDN# CQ-14-05 issued. See IDT.com for PDN specifics.

09/06/2019 Datasheet changed to Obsolete Status.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE. OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Latches category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

ML4875CS-5 401639B 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 5962-8863901RA 5962-88639012A NLV14042BDR2G 2.L18.001-21 2.PM18.002-18 2.PM18.006-18 2.T18.001-21 2.T18.002-18 2.T18.006-18 CQ/A-M22X1,5-45-28 CQ/A-M22X1,5-45-32 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 MM74HC373WM MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 MIC58P01YV 74AHCT573D.112 74LCX16373MTDX CQ/A-M22X1,5-45-18 CQ/A-M22X1,5-45-20 CQ/A-M22X1,5-45-24 CQ/A-M22X1,5-45-30 CQT/A-32-18 AE-V0 CQT/A-32 20-AE-V0 CQT/A-32 32-AE-V0 Z-2106-25001-22 2.904.005 2.904.006 2.904.008 2.KLB-KW8.001PA-07 2.KLB-T9.001PA-07 2.KL-T9.002-02 2.L18.001-18 2.L30.002-30 2.PM30.001-33 2.PM30.003-30 2.PM30.003-33