

3.3V CMOS 32-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD

## **FEATURES:**

- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4μ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- · Available in 96-ball LFBGA package

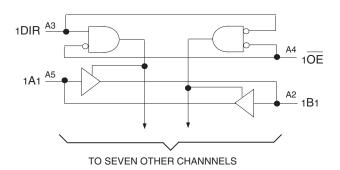
## **DRIVE FEATURES:**

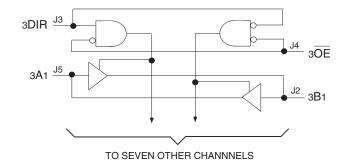
- Balanced Output Drivers: ±24mA
- · Reduced system switching noise

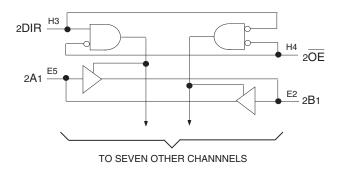
## **APPLICATIONS:**

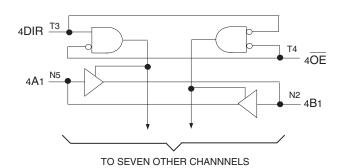
- · 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

## **DESCRIPTION:**


This 32-bit bus transceiver is built using advanced dual metal CMOS technology. This high-speed, low power transceiver is ideal for asynchronous communication between two busses (A and B). The Direction and Output Enable controls are designed to operate the device as either four independent 8-bit transceivers or one 32-bit transceiver. The direction control pins (DIR) control the direction of data flow. The output enable pins (OE) override the direction control and disable both ports. All inputs are designed with hysteresis for improved noise margin.


All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.


The LVCH32245A has been designed with a  $\pm 24$ mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance


The LVCH32245A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

## **FUNCTIONAL BLOCK DIAGRAM**









## INDUSTRIAL TEMPERATURE RANGE

## **PIN CONFIGURATION**

| 6 | 1 <b>A</b> 2 | 1 <b>A</b> 4 | 1 <b>A</b> 6 | 1 <b>A</b> 8 | 2 <b>A</b> 2 | 2 <b>A</b> 4 | 2 <b>A</b> 6 | 2 <b>A</b> 7 | 3 <b>A</b> 2 | 3 <b>A</b> 4 | 3 <b>A</b> 6 | 3 <b>A</b> 8 | 4 <b>A</b> 2 | 4 <b>A</b> 4 | 4 <b>A</b> 6 | 4 <b>A</b> 7 |
|---|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 5 | 1A1          | 1 <b>A</b> 3 | 1 <b>A</b> 5 | 1 <b>A</b> 7 | 2 <b>A</b> 1 | 2 <b>A</b> 3 | 2 <b>A</b> 5 | 2 <b>A</b> 8 | 3 <b>A</b> 1 | 3 <b>A</b> 3 | 3 <b>A</b> 5 | 3 <b>A</b> 7 | 4 <b>A</b> 1 | 4 <b>A</b> 3 | 4 <b>A</b> 5 | 4 <b>A</b> 8 |
| 4 | 1ŌE          | GND          | Vcc          | GND          | GND          | Vcc          | GND          | 2ŌĒ          | зŌЕ          | GND          | Vcc          | GND          | GND          | Vcc          | GND          | 4ŌĒ          |
| 3 | 1DIR         | GND          | Vcc          | GND          | GND          | Vcc          | GND          | 2DIR         | зDIR         | GND          | Vcc          | GND          | GND          | Vcc          | GND          | 4DIR         |
| 2 | 1B1          | 1B3          | 1 <b>B</b> 5 | 1B7          | 2B1          | 2B3          | 2 <b>B</b> 5 | 2B8          | 3B1          | 3B3          | 3B5          | 3B7          | 4B1          | 4B3          | 4B5          | 4B8          |
| 1 | 1B2          | 1B4          | 1B6          | 1B8          | 2B2          | 2B4          | 2B6          | 2B7          | 3B2          | 3B4          | 3B6          | 3B8          | 4B2          | 4B4          | 4B6          | 4B7          |
|   | A            | В            | С            | D            | Е            | F            | G            | Н            | J            | K            | L            | М            | N            | Р            | R            | Т            |

LFBGA TOPVIEW

## ABSOLUTE MAXIMUM RATINGS(1)

| Symbol     | Description                                   | Max          | Unit |
|------------|-----------------------------------------------|--------------|------|
| VTERM      | Terminal Voltage with Respect to GND          | -0.5 to +6.5 | V    |
| Tstg       | Storage Temperature                           | -65 to +150  | °C   |
| lout       | DC Output Current                             | -50 to +50   | mA   |
| lik<br>lok | Continuous Clamp Current,<br>VI < 0 or VO < 0 | <b>–</b> 50  | mA   |
| Icc<br>Iss | Continuous Current through each Vcc or GND    | ±100         | mA   |

#### NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## **CAPACITANCE** (TA = +25°C, F = 1.0MHz)

| Symbol | Parameter <sup>(1)</sup> | Conditions | Тур. | Max. | Unit |
|--------|--------------------------|------------|------|------|------|
| CIN    | Input Capacitance        | VIN = 0V   | 4.5  | 6    | рF   |
| Соит   | Output Capacitance       | Vout = 0V  | 6.5  | 8    | рF   |
| Cı/o   | I/O Port Capacitance     | VIN = 0V   | 6.5  | 8    | pF   |

#### NOTE:

1. As applicable to the device type.

## **PIN DESCRIPTION**

| Pin Names | Description                                     |  |  |  |
|-----------|-------------------------------------------------|--|--|--|
| xŌĒ       | Output Enable Input (Active LOW)                |  |  |  |
| xDIR      | Direction Control Input                         |  |  |  |
| xAx       | Side A Inputs or 3-State Outputs <sup>(1)</sup> |  |  |  |
| хВх       | Side B Inputs or 3-State Outputs <sup>(1)</sup> |  |  |  |

#### NOTE

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

## **FUNCTION TABLE(1)**

| Inp             | outs |                     |
|-----------------|------|---------------------|
| х <del>ОЕ</del> | xDIR | Outputs             |
| L               | L    | Bus B data to Bus A |
| L               | Н    | Bus A data to Bus B |
| Н               | Х    | Z                   |

## NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High Impedance

## **BUS-HOLD CHARACTERISTICS**

| Symbol | Parameter <sup>(1)</sup>         | Test Conditions |                | Min. | Typ. <sup>(2)</sup> | Max. | Unit |
|--------|----------------------------------|-----------------|----------------|------|---------------------|------|------|
| Івнн   | Bus-Hold Input Sustain Current   | Vcc = 3V        | VI = 2V        | -75  | _                   | _    | μΑ   |
| IBHL   |                                  |                 | VI = 0.8V      | 75   | _                   | _    |      |
| Івнн   | Bus-Hold Input Sustain Current   | Vcc = 2.3V      | VI = 1.7V      | _    | _                   | _    | μΑ   |
| IBHL   |                                  |                 | VI = 0.7V      | _    | _                   | _    |      |
| Івнно  | Bus-Hold Input Overdrive Current | Vcc = 3.6V      | VI = 0 to 3.6V | _    | _                   | ±500 | μΑ   |
| Івньо  |                                  |                 |                |      |                     |      |      |

## NOTES:

- 1. Pins with Bus-Hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

| Symbol       | Parameter                                           | Test Conditions                                     |                | Min. | Typ. <sup>(1)</sup> | Max. | Unit |
|--------------|-----------------------------------------------------|-----------------------------------------------------|----------------|------|---------------------|------|------|
| ViH          | Input HIGH Voltage Level                            | Vcc = 2.3V to 2.7V                                  |                | 1.7  | _                   | _    | V    |
|              |                                                     | Vcc = 2.7V to 3.6V                                  |                | 2    | -                   | _    |      |
| VIL          | Input LOW Voltage Level                             | Vcc = 2.3V to 2.7V                                  |                | T -  | _                   | 0.7  | V    |
|              |                                                     | Vcc = 2.7V to 3.6V                                  |                |      | _                   | 0.8  |      |
| lih<br>lil   | Input Leakage Current                               | Vcc = 3.6V                                          | VI = 0 to 5.5V | _    | _                   | ±5   | μΑ   |
| lozh<br>lozl | High Impedance Output Current (3-State Output pins) | Vcc = 3.6V                                          | Vo = 0 to 5.5V | _    | _                   | ±10  | μΑ   |
| loff         | Input/Output Power Off Leakage                      | Vcc = 0V, Vin or Vo ≤ 5.5V                          |                | _    | _                   | ±50  | μΑ   |
| Vik          | Clamp Diode Voltage                                 | Vcc = 2.3V, IIN = -18mA                             |                | T -  | -0.7                | -1.2 | V    |
| VH           | Input Hysteresis                                    | Vcc = 3.3V                                          |                | T -  | 100                 | _    | mV   |
| ICCL<br>ICCH | Quiescent Power Supply Current                      | Vcc = 3.6V Vin = GND or Vcc                         |                | _    | _                   | 10   | μA   |
| Iccz         |                                                     | $3.6 \le VIN \le 5.5V^{(2)}$                        |                |      | _                   | 10   |      |
| ∆lcc         | Quiescent Power Supply Current<br>Variation         | One input at Vcc - 0.6V, other inputs at Vcc or GND |                | _    | _                   | 500  | μA   |

## NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

## **OUTPUT DRIVE CHARACTERISTICS**

| Symbol | Parameter           | Test Conditions <sup>(1)</sup> |               | Min.    | Max. | Unit |
|--------|---------------------|--------------------------------|---------------|---------|------|------|
| Voн    | Output HIGH Voltage | Vcc = 2.3V to 3.6V             | Iон = - 0.1mA | Vcc-0.2 | _    | ٧    |
|        |                     | Vcc = 2.3V                     | Iон = — 6mA   | 2       |      |      |
|        |                     | Vcc = 2.3V                     | Iон = - 12mA  | 1.7     | _    |      |
|        |                     | Vcc = 2.7V                     |               | 2.2     | _    |      |
|        |                     | Vcc = 3V                       |               | 2.4     | _    |      |
|        |                     | Vcc = 3V                       | Iон = - 24mA  | 2.2     | _    |      |
| Vol    | Output LOW Voltage  | Vcc = 2.3V to 3.6V             | IoL = 0.1mA   | _       | 0.2  | V    |
|        |                     | Vcc = 2.3V                     | IoL = 6mA     | _       | 0.4  |      |
|        |                     |                                | IoL = 12mA    | _       | 0.7  |      |
|        |                     | Vcc = 2.7V                     | IoL = 12mA    | _       | 0.4  |      |
|        |                     | Vcc = 3V                       | IoL = 24mA    | _       | 0.55 |      |

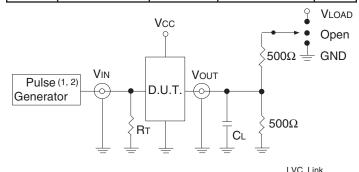
#### NOTE:

<sup>1.</sup> VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C.

## **OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C**

| Symbol | Parameter                                                      | Test Conditions     | Typical | Unit |
|--------|----------------------------------------------------------------|---------------------|---------|------|
| CPD    | Power Dissipation Capacitance per Transceiver Outputs enabled  | CL = 0pF, f = 10Mhz | 76      | pF   |
| CPD    | Power Dissipation Capacitance per Transceiver Outputs disabled |                     | 8       |      |

## **SWITCHING CHARACTERISTICS**(1)


|        |                            | Vcc = | 2.7V | Vcc = 3.3 | V ± 0.3V |      |
|--------|----------------------------|-------|------|-----------|----------|------|
| Symbol | Parameter                  | Min.  | Max. | Min.      | Max.     | Unit |
| tPLH   | Propagation Delay          | 1.5   | 4.7  | 1         | 4        | ns   |
| tPHL   | xAx to xBx, xBx to xAx     |       |      |           |          |      |
| tpzh   | Output Enable Time         | 1.5   | 6.7  | 1.5       | 5.5      | ns   |
| tpzl   | xOE to xAx or xBx          |       |      |           |          |      |
| tpHZ   | Output Disable Time        | 1.5   | 7.1  | 1.5       | 6.6      | ns   |
| tPLZ   | xOE to xAx or xBx          |       |      |           |          |      |
| tpzh   | Output Enable Time         | 1.5   | 7    | 1.5       | 5.5      | ns   |
| tpzl   | xDIR to xAx or xBx         |       |      |           |          |      |
| tpHZ   | Output Disable Time        | 1.5   | 7.4  | 1.5       | 6.6      | ns   |
| tPLZ   | xDIR to xAx or xBx         |       |      |           |          |      |
| tsk(o) | Output Skew <sup>(2)</sup> | _     | _    | _         | 500      | ps   |

## NOTES:

- 1. See TEST CIRCUITS AND WAVEFORMS. TA = -40°C to + 85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

# TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

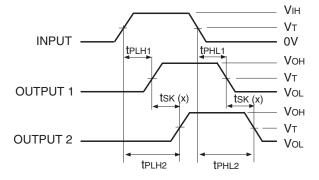
| Symbol | Vcc <sup>(1)</sup> =3.3V±0.3V | Vcc <sup>(1)</sup> =2.7V | Vcc <sup>(2)</sup> =2.5V±0.2V | Unit |
|--------|-------------------------------|--------------------------|-------------------------------|------|
| VLOAD  | 6                             | 6                        | 2 x Vcc                       | ٧    |
| VIH    | 2.7                           | 2.7                      | Vcc                           | V    |
| VT     | 1.5                           | 1.5                      | Vcc/2                         | V    |
| VLZ    | 300                           | 300                      | 150                           | mV   |
| VHZ    | 300                           | 300                      | 150                           | mV   |
| CL     | 50                            | 50                       | 30                            | pF   |



Test Circuit for All Outputs

#### **DEFINITIONS:**

CL = Load capacitance: includes jig and probe capacitance.

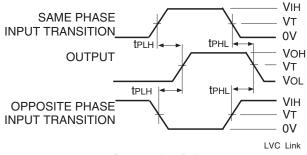

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

#### NOTES:

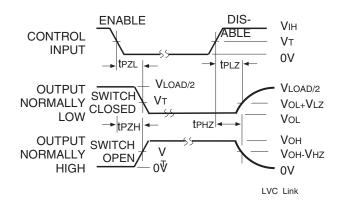
- 1. Pulse Generator for All Pulses: Rate  $\leq$  1.0MHz; tF  $\leq$  2.5ns; tR  $\leq$  2.5ns.
- 2. Pulse Generator for All Pulses: Rate  $\leq$  1.0MHz; tF  $\leq$  2ns; tR  $\leq$  2ns.

## **SWITCH POSITION**

| Test                                    | Switch |
|-----------------------------------------|--------|
| Open Drain<br>Disable Low<br>Enable Low | VLOAD  |
| Disable High<br>Enable High             | GND    |
| All Other Tests                         | Open   |



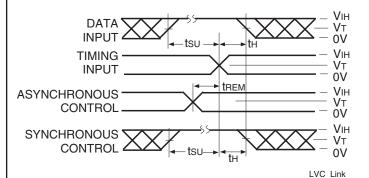

 $\label{eq:tsk} tsk(x) = | \, tplh2 - tplh1 \ \ \, or| \ tphl2 - tphl1 \\ \text{LVC Link}$ 


## Output Skew - tsk(x)

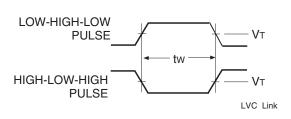
## NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.



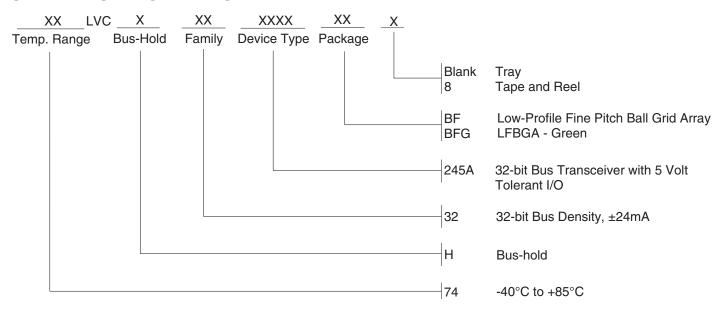

## **Propagation Delay**




#### Enable and Disable Times

## NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.




Set-up, Hold, and Release Times



Pulse Width

## ORDERING INFORMATION



## **Orderable Part Information**

| Speed<br>(ns) | Orderable Part ID | Pkg.<br>Code | Pkg.<br>Type | Temp.<br>Grade |
|---------------|-------------------|--------------|--------------|----------------|
| Α             | 74LVCH32245ABF    | BF96         | CABGA        | I              |
|               | 74LVCH32245ABF8   | BF96         | CABGA        | I              |
|               | 74LVCH32245ABFG   | BFG96        | CABGA        | ı              |
|               | 74LVCH32245ABFG8  | BFG96        | CABGA        | I              |

# **Datasheet Document History**

02/29/2016 Pg. 7 Updated the ordering information by adding Tape and Reel.

04/01/2021 Pg. 1-7 Rebranded as a Renesas datasheet. Added new table of orderable part information.

#### IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

## **Corporate Headquarters**

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

#### **Trademarks**

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transceivers category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

74LS645N PI74LVCC3245AS 5962-8968201LA 5962-7802301Q2A TC74VCX164245(EL,F MC74LCX245MNTWG
TC7WPB8306L8X,LF(S MM74HC245AMTCX 74LVX245MTC 74ALVC16245MTDX 74LCXR162245MTX 74VCX164245MTDX
74VHC245M 74VHC245MX FXL2TD245L10X 74LVC1T45GM,115 74LVC245ADTR2G TC74AC245P(F) 74LVT245BBT20-13
CD74ACT245M 74AHC245D.112 SN74LVCH16952ADGGR CY74FCT16245TPVCT 74AHCT245PW.118 74LV245DB.118
74LV245D.112 74LV245PW.112 74LVC2245APW.112 74LVCH245AD.112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R
74LVCR162245ZQLR SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N
MC100EP16DTR2G 5962-9221403MRA 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG MAX22088GTG+ 74HC646N
MAX9320EUA 74AVC8T245PW,118 TC7QPB9306FT(EL) SY88808LMH 74LVCH2T45DC-Q100H