

General Description

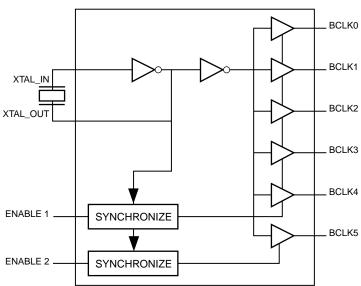
The 83905I is a low skew, 1-to-6 LVCMOS / LVTTL Fanout Buffer. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 6 to 12 by utilizing the ability of the outputs to drive two series terminated lines.

The 83905I is characterized at full 3.3V, 2.5V, and 1.8V, mixed 3.3V/2.5V, 3.3V/1.8V and 2.5V/1.8V output operating supply modes. Guaranteed output and part-to-part skew characteristics along with the 1.8V output capabilities makes the 83905I ideal for high performance, single ended applications that also require a limited output voltage.

Features

- Six LVCMOS / LVTTL outputs
- Outputs able to drive 12 series terminated lines
- Crystal Oscillator Interface
- Crystal input frequency range: 10MHz to 40MHz
- Output skew: 80ps (maximum)
- RMS phase jitter @ 25MHz, (100Hz 1MHz): 0.26ps (typical),
 V_{DD} = V_{DDO} = 2.5V

<u>Offset</u>	Noise Power
100Hz	129.7 dBc/Hz
1kHz	144.4 dBc/Hz
10kHz	147.3 dBc/Hz
100kHz	157.3 dBc/Hz


- 5V tolerant enable inputs
- Synchronous output enables
- Operating power supply modes: Full 3.3V, 2.5V, 1.8V
 Mixed 3.3V core/2.5V output operating supply Mixed 3.3V core/1.8V output operating supply Mixed 2.5V core/1.8V output operating supply
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

Pin Assignments

XTAL_OUT □	1	16	XTAL_IN
ENABLE2□	2	15	□ ENABLE1
GND□	3	14	□BCLK5
BCLK0□	4	13	□Vddo
V _{DDO} □	5	12	□BCLK4
BCLK1 ☐	6	11	□GND
GND□	7	10	□BCLK3
BCLK2□	8	9	□Vdd

16-Lead TSSOP
4.4mm x 5.0mm x 0.925mm
package body
G Package
Top View

Block Diagram

Pin Descriptions and Characteristics

Table 1. Pin Descriptions

Number	Name	Туре	Description
1	XTAL_OUT	Output	Crystal oscillator interface. XTAL_OUT is the output.
2	ENABLE2	Input	Clock enable. LVCMOS/LVTTL interface levels. See Table 3.
3	GND	Power	Power supply ground.
4	BCLK0	Output	Clock output. LVCMOS/LVTTL interface levels.
5	V _{DDO}	Power	Output supply pin.
6	BCLK1	Output	Clock output. LVCMOS/LVTTL interface levels.
7	GND	Power	Power supply ground.
8	BCLK2	Output	Clock output. LVCMOS/LVTTL interface levels.
9	V_{DD}	Power	Power supply pin.
10	BCLK3	Output	Clock output. LVCMOS/LVTTL interface levels.
11	GND	Power	Power supply ground.
12	BCLK4	Output	Clock output. LVCMOS/LVTTL interface levels.
13	V _{DDO}	Power	Output supply pin.
14	BCLK5	Output	Clock output. LVCMOS/LVTTL interface levels.
15	ENABLE1	Input	Clock enable. LVCMOS/LVTTL interface levels. See Table 3.
16	XTAL_IN	Input	Crystal oscillator interface. XTAL_IN is the input.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
Power Dissipation	Power Dissipation	V _{DDO} = 3.465V			19	pF
C_{PD}	Capacitance	V _{DDO} = 2.625V			18	pF
	(per output)	V _{DDO} = 2.0V			16	pF
	Output Impedance	$V_{DDO} = 3.3V \pm 5\%$		7		Ω
R _{OUT}		$V_{DDO} = 2.5V \pm 5\%$		7		Ω
		$V_{DDO} = 1.8V \pm 0.2V$		10		Ω

Function Table

Table 3. Output Enable and Clock Enable Function Table

Control Inputs		Outputs		
ENABLE 1	ENABLE2	BCLK[0:4]	BCLK5	
0	0	LOW	LOW	
0	1	LOW	Toggling	
1	0	Toggling	LOW	
1	1	Toggling	Toggling	

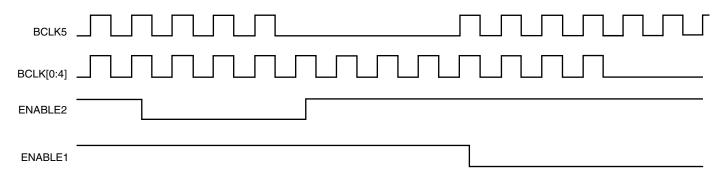


Figure 1. Enable Timing Diagram

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DDO} + 0.5V
Package Thermal Impedance, θ_{JA} 16-Lead TSSOP package	89°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3 V \pm 5\%$, $T_A = -40 ^{\circ} C$ to $85 ^{\circ} C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current	ENABLE [1:2] = 00			10	mA
I _{DDO}	Output Supply Current	ENABLE [1:2] = 00			5	mA

Table 4B. Power Supply DC Characteristics, V_{DD} = V_{DDO} = 2.5V \pm 5%, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		2.375	2.5	2.625	V
V_{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current	ENABLE [1:2] = 00			8	mA
I _{DDO}	Output Supply Current	ENABLE [1:2] = 00			4	mA

Table 4C. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		1.6	1.8	2.0	V
V_{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I _{DD}	Power Supply Current	ENABLE [1:2] = 00			5	mA
I _{DDO}	Output Supply Current	ENABLE [1:2] = 00			3	mA

Table 4D. Power Supply DC Characteristics, V_{DD} = 3.3V ± 5%, V_{DDO} = 2.5V ± 5%, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current	ENABLE [1:2] = 00			10	mA
I _{DDO}	Output Supply Current	ENABLE [1:2] = 00			4	mA

Table 4E. Power Supply DC Characteristics, $3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I _{DD}	Power Supply Current	ENABLE [1:2] = 00			10	mA
I _{DDO}	Output Supply Current	ENABLE [1:2] = 00			3	mA

Table 4F. Power Supply DC Characteristics, V_{DD} = 2.5V ± 5%, V_{DDO} = 1.8V ± 0.2V, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		2.375	2.5	2.625	V
V_{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I _{DD}	Power Supply Current	ENABLE [1:2] = 00			8	mA
I _{DDO}	Output Supply Current	ENABLE [1:2] = 00			3	mA

Table 4G. LVCMOS/LVTTL DC Characteristics, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
			$V_{DD} = 3.3V \pm 5\%$	2		V _{DD} + 0.3	V
V_{IH}	Input High Voltage	ENABLE1, ENABLE2	V _{DD} = 2.5V ± 5%	1.7		V _{DD} + 0.3	V
	i iigii i iiiigi		$V_{DD} = 1.8V \pm 0.2V$	0.65 * V _{DD}		V _{DD} + 0.3	V
			$V_{DD} = 3.3V \pm 5\%$	-0.3		0.8	V
V_{IL}	Input Low Voltage	ENABLE1, ENABLE2	$V_{DD} = 2.5V \pm 5\%$	-0.3		0.7	V
	on remage		$V{DD} = 1.8V \pm 0.2V$	-0.3		0.35 * V _{DD}	V
		<u>"</u>	$V_{DDO} = 3.3V \pm 5\%$; NOTE 1	2.6			V
.,	Output High \/	'altaga	$V_{DDO} = 2.5V \pm 5\%; I_{OH} = -1mA$	2			V
V _{OH}	Output High V	ollage	V _{DDO} = 2.5V ± 5%; NOTE 1	1.8			V
			V _{DDO} = 1.8V ± 0.2V; NOTE 1	V _{DDO} - 0.3			V
			$V_{DDO} = 3.3V \pm 5\%$; NOTE 1			0.5	V
.,	Output Low Voltage; NOTE 1		$V_{DDO} = 2.5V \pm 5\%; I_{OL} = 1mA$			0.4	V
V _{OL}	Output Low Vo	ollage, NOTE 1	V _{DDO} = 2.5V ± 5%; NOTE 1			0.45	V
			$V_{DDO} = 1.8V \pm 0.2V$; NOTE 1			0.35	V

NOTE 1: Outputs terminated with 50Ω to $V_{DDO}/2$. See Parameter Measurement Information, *Output Load Test Circuit diagrams*.

Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamental		
Frequency		10		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

AC Electrical Characteristics

Table 6A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		Using External Crystal		10		40	MHz
f _{MAX}	Output Frequency	Using External Clock Source NOTE 1		DC		100	MHz
odc	Output Duty Cycle	1		48		52	%
tsk(o)	Output Skew; NOT	E 2, 3				80	ps
tjit(Ø)	RMS Phase Jitter (Random); NOTE 4	25MHz, Integration Range: 100Hz – 1MHz		0.13		ps
t_R / t_F	Output Rise/Fall Ti	me	20% to 80%	200		800	ps
+	Output Enable	ENABLE1				4	cycles
t _{EN}	Time; NOTE 5	ENABLE2				4	cycles
+	Output Disable	ENABLE1				4	cycles
t _{DIS}	Time; NOTE 5	ENABLE2				4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \le f_{MAX}$ using a crystal input unless noted otherwise.

NOTE: Terminated at 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by a single-ended LVCMOS signal. Please refer to Application Information section.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: See phase noise plot.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6B. AC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		Using External Crystal		10		40	MHz
f _{MAX}	Output Frequency	Using External Clock Source NOTE 1		DC		100	MHz
odc	Output Duty Cycle	1		47		53	%
tsk(o)	Output Skew; NOT	E 2, 3				80	ps
tjit	RMS Phase Jitter (Random); NOTE 4	25MHz, Integration Range: 100Hz – 1MHz		0.26		ps
t _R / t _F	Output Rise/Fall Ti	me	20% to 80%	200		800	ps
	Output Enable	ENABLE1				4	cycles
t _{EN}	Time; NOTE 5	ENABLE2				4	cycles
	Output Disable	ENABLE1				4	cycles
t _{DIS}	Time; NOTE 5	ENABLE2				4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \le f_{MAX}$ using a crystal input unless noted otherwise.

NOTE: Terminated at 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by a single-ended LVCMOS signal. Please refer to Application Information section.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: See phase noise plot.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6C. AC Characteristics, $V_{DD} = V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		Using External Crystal		10		40	MHz
f _{MAX}	Output Frequency	Using External Clock Source NOTE 1		DC		100	MHz
odc	Output Duty Cycle			47		53	%
tsk(o)	Output Skew; NOT	E 2, 3				80	ps
tjit(Ø)	RMS Phase Jitter (Random)	25MHz, Integration Range: 100Hz – 1MHz		0.27		ps
t_R / t_F	Output Rise/Fall Ti	me	20% to 80%	200		900	ps
	Output Enable	ENABLE1				4	cycles
t _{EN}	Time; NOTE 4	ENABLE2				4	cycles
4	Output Disable	ENABLE1				4	cycles
t _{DIS}	Time; NOTE 4	ENABLE2				4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \le f_{MAX}$ using a crystal input unless noted otherwise.

NOTE: Terminated at 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by a single-ended LVCMOS signal. Please refer to Application Information section.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: See phase noise plot.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6D. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		Using External Crystal		10		40	MHz
f_{MAX}	Output Frequency	Using External Clock Source NOTE 1		DC		100	MHz
odc	Output Duty Cycle	1		48		52	%
tsk(o)	Output Skew; NOT	E 2, 3				80	ps
tjit	RMS Phase Jitter (Random)	25MHz, Integration Range: 100Hz – 1MHz		0.14		ps
t _R / t _F	Output Rise/Fall Tir	me	20% to 80%	200		800	ps
	Output Enable	ENABLE1				4	cycles
t _{EN}	Time; NOTE 4	ENABLE2				4	cycles
	Output Disable	ENABLE1				4	cycles
t _{DIS}	Time; NOTE 4	ENABLE2				4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \le f_{MAX}$ using a crystal input unless noted otherwise.

NOTE: Terminated at 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by a single-ended LVCMOS signal. Please refer to Application Information section.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: See phase noise plot.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6E. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40$ °C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		Using External Crystal		10		40	MHz
f _{MAX}	Output Frequency	Using External Clock Source NOTE 1		DC		100	MHz
odc	Output Duty Cycle			48		52	%
tsk(o)	Output Skew; NOT	E 2, 3				80	ps
tjit	RMS Phase Jitter (Random)	25MHz, Integration Range: 100Hz – 1MHz		0.18		ps
t_R / t_F	Output Rise/Fall Ti	me	20% to 80%	200		900	ps
	Output Enable	ENABLE1				4	cycles
t _{EN}	Time; NOTE 4	ENABLE2				4	cycles
	Output Disable	ENABLE1				4	cycles
t _{DIS}	Time; NOTE 4	ENABLE2				4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \le f_{MAX}$ using a crystal input unless noted otherwise.

NOTE: Terminated at 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by a single-ended LVCMOS signal. Please refer to Application Information section.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: See phase noise plot.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6F. AC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40$ °C to 85°C

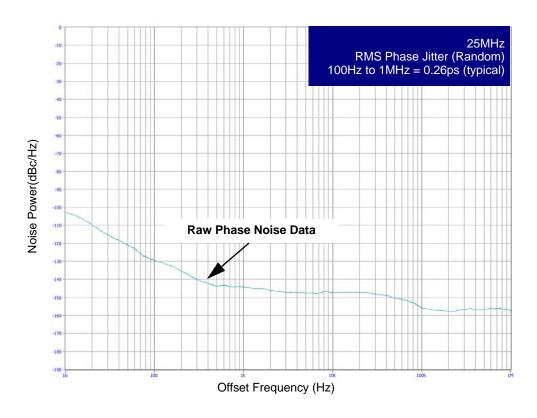
Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		Using External Crystal		10		40	MHz
f _{MAX}	Output Frequency	Using External Clock Source NOTE 1		DC		100	MHz
odc	Output Duty Cycle			47		53	%
tsk(o)	Output Skew; NOT	E 2, 3				80	ps
tjit	RMS Phase Jitter (Random)	25MHz, Integration Range: 100Hz – 1MHz		0.19		ps
t_R / t_F	Output Rise/Fall Tir	me	20% to 80%	200		900	ps
	Output Enable	ENABLE1				4	cycles
t _{EN}	Time; NOTE 4	ENABLE2				4	cycles
	Output Disable	ENABLE1				4	cycles
t _{DIS}	Time; NOTE 4	ENABLE2				4	cycles

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

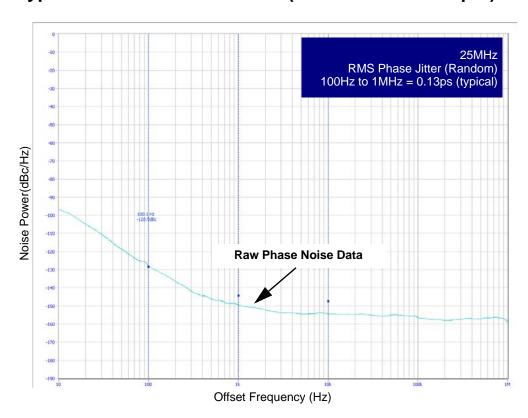
NOTE: All parameters measured at $f \le f_{MAX}$ using a crystal input unless noted otherwise.

NOTE: Terminated at 50Ω to $V_{DDO}/2$.

NOTE 1: XTAL_IN can be overdriven by a single-ended LVCMOS signal. Please refer to Application Information section.

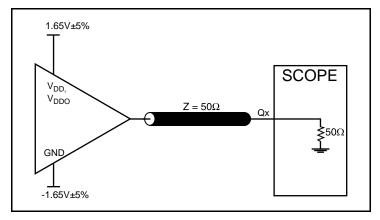

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

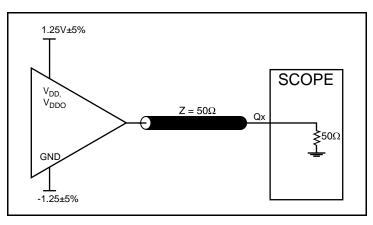

NOTE 4: See phase noise plot.

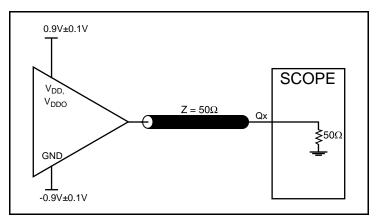
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

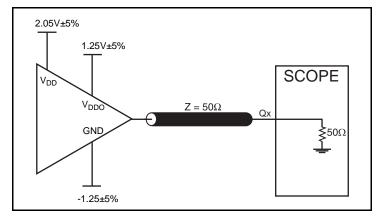
Typical Phase Noise at 25MHz (2.5V Core/2.5V Output)

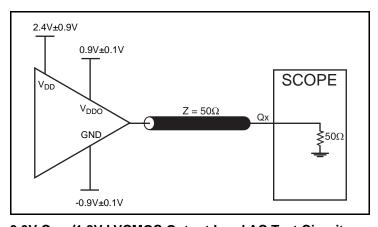


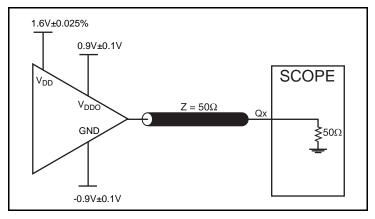
Typical Phase Noise at 25MHz (2.5V Core/2.5V Output)



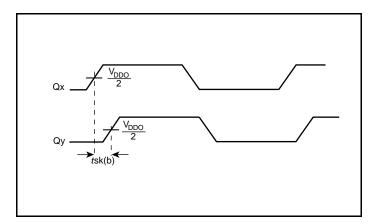

Parameter Measurement Information

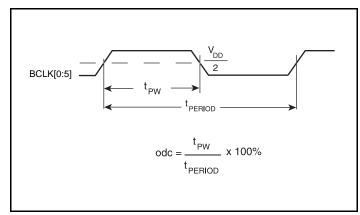

3.3V Core/3.3V LVCMOS Output Load AC Test Circuit


2.5V Core/2.5V LVCMOS Output Load AC Test Circuit

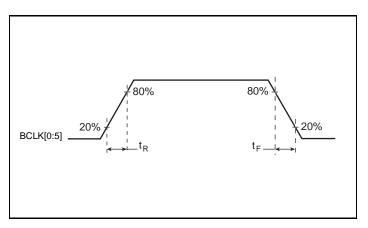

1.8V Core/1.8V LVCMOS Output Load AC Test Circuit

3.3V Core/2.5V LVCMOS Output Load AC Test Circuit


3.3V Core/1.8V LVCMOS Output Load AC Test Circuit



2.5V Core/1.8V LVCMOS Output Load AC Test Circuit


Parameter Measurement Information, continued

Output Skew

Output Duty Cycle/Pulse Width/Period

Output Rise/Fall Time

Applications Information

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 2*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals

the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is quaranteed by using a quartz crystal.

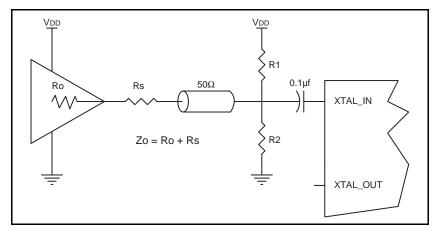


Figure 2. General Diagram for LVCMOS Driver to XTAL Input Interface

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 3*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are

application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

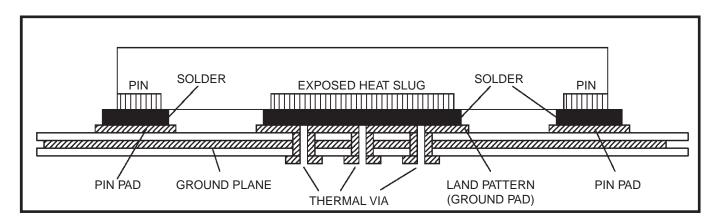


Figure 3. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1 \mathrm{k}\Omega$ resistor can be used.

Outputs:

LVCMOS Outputs

All unused LVCMOS output can be left floating. There should be no trace attached.

Layout Guideline

Figure 4 shows an example of 83905I application schematic. The schematic example focuses on functional connections and is not configuration specific. In this example, the device is operated at $V_{DD} = 3.3V$ and $V_{DDO} = 1.8V$. The crystal inputs are loaded with an 18pf load resonant quartz crystal. The tuning capacitors (C1, C2) are fairly accurate, but minor adjustments might be required. Refer to the pin description and functional tables in the datasheet to ensure the logic control inputs are properly set. For the LVCMOS output drivers, two termination examples are shown in the schematic. For additional termination examples are shown in the LVCMOS Termination Application Note.

As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 83905I provides separate V_{DD} and V_{DDO} power supplies to isolate any high switching noise from coupling into the internal oscillator. In order to achieve the best possible filtering, it is highly

recommended that the 0.1uF capacitors on the device side of the ferrite beads be placed on the device side of the PCB as close to the power pins as possible. This is represented by the placement of these capacitors in the schematic. If space is limited, the ferrite beads, 10uF and 0.1uF capacitor connected to the board supplies can be placed on the opposite side of the PCB. If space permits, place all filter components on the device side of the board.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 0kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.

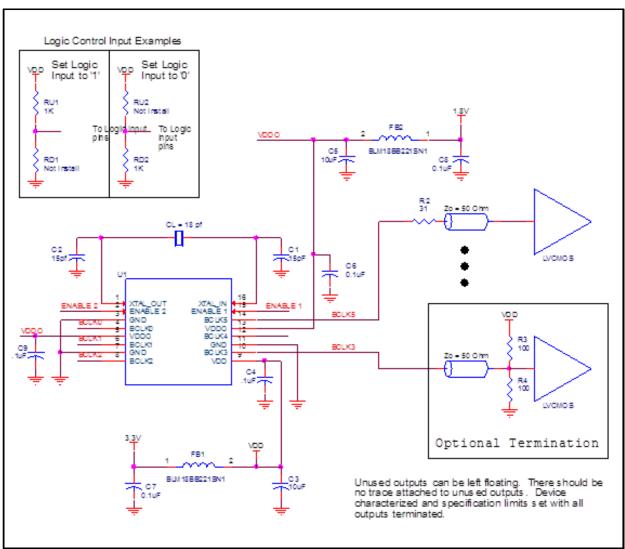


Figure 4. Schematic of Recommended Layout

Power Considerations

This section provides information on power dissipation and junction temperature for the 83905I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 83905l is the sum of the core power plus the analog power plus the power dissipated due to the load. The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

- Power (core)_{MAX} = $V_{DD\ MAX}$ * (I_{DD} + I_{DDO}) = 3.465V *(10mA + 5mA) = **51.9mW**
- Output Impedance R_{OUT} Power Dissipation due to Loading 50Ω to $V_{DD}/2$ Output Current $I_{OUT} = V_{DD\ MAX} / [2 * (50\Omega + R_{OUT})] = 3.465 V / [2 * (50\Omega + 7\Omega)] =$ **30.4mA**
- Power Dissipation on the R_{OUT} per LVCMOS output Power (R_{OUT}) = R_{OUT} * (I_{OUT})² = 7 Ω * (30.4mA)² = **6.5mW per output**
- Total Power Dissipation on the R_{OUT}
 Total Power (R_{OUT}) = 6.5mW * 6 = 39mW

Dynamic Power Dissipation at 25MHz

```
Power (25MHz) = C_{PD} * Frequency * (V_{DD})^2 = 19pF * 25MHz * (3.465V)^2 = 5.70mW per output Total Power (25MHz) = 5.70mW * 6 = 34.2mW
```

Total Power Dissipation

- Total Power
 - = Power (core)_{MAX} + Total Power (R_{OUT}) + Total Power (25MHz)
 - = 51.98mW + 39mW + 34.2mW
 - = 125.1mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 $\theta_{1\Delta}$ = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 89°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.125\text{W} * 89^{\circ}\text{C/W} = 96.1^{\circ}\text{C}$. This is below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 16-Lead TSSOP, Forced Convection

	θ_{JA} by Velocity				
Linear Feet per Minute	0	200	500		
Single-Layer PCB, JEDEC Standard Test Boards	137.1°C/W	118.2°C/W	106.8°C/W		
Multi-Layer PCB, JEDEC Standard Test Boards	89.0°C/W	81.8°C/W	78.1°C/W		
NOTE: Most modern PCB designs use milti-layered boards. The data in the second row pertains to most designs.					

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 16-Lead TSSOP

	θ_{JA} vs. Air Flow					
Linear Feet per Minute	0	200	500			
Single-Layer PCB, JEDEC Standard Test Boards	137.1°C/W	118.2°C/W	106.8°C/W			
Multi-Layer PCB, JEDEC Standard Test Boards	89.0°C/W	81.8°C/W	78.1°C/W			
NOTE: Most modern PCB designs use milti-layered b	NOTE: Most modern PCB designs use milti-layered boards. The data in the second row pertains to most designs.					

Transistor Count

The transistor count for 83905I: 339

Package Outline and Package Dimensions

Package Outline - G Suffix for 16-Lead TSSOP

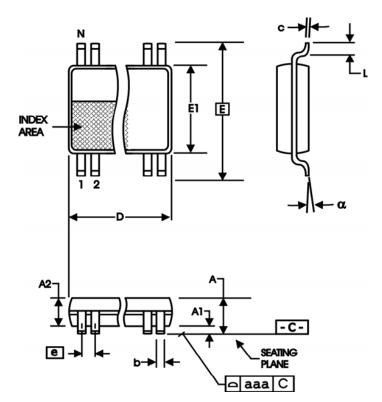


Table 9. Package Dimensions for 16-Lead TSSOP

All	All Dimensions in Millimeters						
Symbol	Symbol Minimum Maximum						
N		16					
Α		1.20					
A1	0.05	0.15					
A2	0.80	1.05					
b	0.19	0.30					
С	0.09	0.20					
D	4.90	5.10					
E	6.40) Basic					
E1	4.30	4.50					
е	0.68	5 Basic					
L	0.45	0.75					
α	0°	8°					
aaa		0.10					

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
83905AGILF	83905AIL	16-Lead TSSOP, Lead-Free	Tube	-40°C to 85°C
83905AGILFT	83905AIL	16-Lead TSSOP, Lead-Free	Tape & Reel	-40°C to 85°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
Α		2	Added Enable Timing Diagram.	3/28/05
В	T6A - T6F	1 5 - 7 8	Features Section - added RMS Phase Jitter bullet. AC Characteristics Tables - added RMS Phase Jitter specs. Corrected ambient operating temperature Added Phase Noise Plot.	4/8/05
В		11 12	Added Crystal Input Interface in Application Section. Added Schematic layout.	5/16/05
В	Т9	15	Ordering Information - removed leaded parts. Removed ICS from ordering part number. Removed 2500 on tape and reel shipping information. Removed lead free note.	12/3/15
С		3 13 13 14 14 15	Corrected Figure 1, Enable Timing Diagram. Applications Information Section: Deleted Crystal Input Interface application note, see Layout Guideline Added LVCMOS to XTAL Interface application note Added VFQFN EPAD Thermal Release Path application note Added Recommendations for Unused Input and Output Pins application note Updated Layout Guideline, adding crystal interface Added Power Considerations section. Updated datasheet header/footer and format.	9/28/16

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T
PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX
PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG
NB7L14MMNG NB3N2304NZDTR2G NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G
ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ
ADCLK846BCPZ-REEL7