General Description

The 83908I-02 is a low skew, high performance 1-to-8 Crystal Oscillator//Crystal-to-LVCMOS fanout buffer from IDT. The 83908I-02 has selectable single-ended clock or two crystal-oscillator inputs. There is an output enable to disable the outputs by placing them into a high-impedance state.

Guaranteed output and part-to-part skew characteristics make the 83908I-02 ideal for those applications demanding well defined performance and repeatability.

Block Diagram

Pin Assignment

VDD 1	24	\square GND
XTAL_INO \square^{2}	23	\square XTAL_IN1
XTAL_OUT0 ${ }^{\text {- }}$	22	\square XTAL_OUT 1
Vddo 4	21	\square Vdoo
Q0 -5	20	Q Q7
Q1 ${ }^{6}$	19	\square Q6
GND \square^{7}	18	\square GND
Q2 \square^{8}	17	\square Q5
Q3 \square^{9}	16	\square Q4
Vdoo -10	15	$\square \mathrm{VdDo}$
CLK_SELO 11	14	\square CLK_SEL1
CLK 12	13	$\square \mathrm{OE}$

839081-02
24-Lead, 173-MIL TSSOP $4.4 \mathrm{~mm} \times 7.8 \mathrm{~mm} \times 0.925 \mathrm{~mm}$ body package G Package Top View

Table 1. Pin Descriptions

Number	Name	Type	Description	
1	V $_{\text {DD }}$	Power		Power supply pin.
2,3	XTAL_IN0, XTAL_OUT0	Input		Crystal oscillator interface. XTAL_IN0 is the input. XTAL_OUT0 is the output.
$4,10,15,21$	V $_{\text {Doo }}$	Power		Output supply pins.
$5,6,8$, $9,16,17$, 19,20	Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	Output		Single-ended clock outputs. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4		pF
$\mathrm{R}_{\text {pulue }}$	Input Pullup Resistor			51		$\mathrm{k} \Omega$
$\mathrm{R}_{\text {puliown }}$	Input Pulldown Resistor			51		$\mathrm{k} \Omega$
$\mathrm{C}_{P \mathrm{D}}$	Power Dissipation Capacitance (per output)	$\mathrm{V}_{\text {DOO }}=3.465 \mathrm{~V}$		7		pF
		$\mathrm{V}_{\mathrm{DDO}}=2.625 \mathrm{~V}$		7		pF
		$\mathrm{V}_{\text {DDo }}=2 \mathrm{~V}$		6		pF
$\mathrm{R}_{\text {out }}$	Output Impedance	$\mathrm{V}_{\text {Doo }}=3.3 \mathrm{~V} \pm 5 \%$		19		Ω
		$\mathrm{V}_{\text {Doo }}=2.5 \mathrm{~V} \pm 5 \%$		21		Ω
		$\mathrm{V}_{\text {Doo }}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$		32		Ω

Table 3. Input Reference Function Table

Control Inputs		Reference	
CLK_SEL1	CLK_SEL0		
0	0	XTAL0 enabled (default)	XTAL1 disabled
0	1	XTAL1 enabled	XTALO disabled
1	0	CLK enabled	XTAL0 and XTAL1 disabled
1	1	CLK enabled	XTAL0 and XTAL1 disabled

Absolute Maximum Ratings

Supply Voltage, V_{DD}
Inputs, $\mathrm{V}_{\text {, }}$
Outputs, V_{o}
Package Thermal Impedance, $\theta_{\mathrm{JA}} \quad 87.8^{\circ} \mathrm{C} / \mathrm{W}(0 \mathrm{mps})$
Storage Temperature, $\mathrm{T}_{\text {sтa }} \quad-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
4.6 V
-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5 \mathrm{~V}$

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{dd}}=\mathrm{V}_{\mathrm{ddo}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$V_{D D}$	Core Supply Voltage		3.135	3.3	3.465	V
$\mathrm{~V}_{\mathrm{DDO}}$	Output Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Power Supply Current	No Load \& XTALx selected			30	mA
		No Load \& CLK selected			1	mA
$\mathrm{I}_{\mathrm{DDO}}$	Output Supply Current	No Load \& CLK selected			1	mA

Table 4B. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{dd}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {do }}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
$\mathrm{~V}_{\mathrm{DDO}}$	Output Supply Voltage		2.375	2.5	2.625	V
$I_{D D}$	Power Supply Current	No Load \& XTALx selected			30	mA
		No Load \& CLK selected			1	mA
$I_{D D O}$	Output Supply Current	No Load \& CLK selected			1	mA

Table 4C. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{d}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{dod}}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
$\mathrm{~V}_{D D}$	Output Supply Voltage		1.6	1.8	2.0	V
$I_{D D}$	Power Supply Current	No Load \& XTALx selected			30	mA
		No Load \& CLK selected			1	mA
$I_{D D O}$	Output Supply Current	No Load \& CLK selected			1	mA

Table 4D. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{Ddo}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
$\mathrm{~V}_{\mathrm{DDO}}$	Output Supply Voltage		2.375	2.5	2.625	V
I_{DD}	Power Supply Current	No Load \& XTALx selected			20	mA
		No Load \& CLK selected			1	mA
	Output Supply Current	No Load \& CLK selected			1	mA

Table 4E. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{dd}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{dod}}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
$\mathrm{~V}_{\mathrm{DDO}}$	Output Supply Voltage		1.6	1.8	2.0	V
I_{DD}	Power Supply Current	No Load \& XTALx selected			20	mA
		No Load \& CLK selected			1	mA
	Output Supply Current	No Load \& CLK selected			1	mA

Table 4F. DC Characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V_{H}	Input High Voltage		$\mathrm{V}_{\text {DD }}=3.3 \mathrm{~V} \pm 5 \%$	2.2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
			$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%$	1.6		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {ut }}$	Input Low Voltage		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%$	-0.3		1.3	V
			$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%$	-0.3		0.9	V
${ }_{\text {H }}$	Input High Current	$\begin{aligned} & \text { CLK, CLK_ } \\ & \text { SEL[0:1] } \end{aligned}$	$\mathrm{V}_{\text {DD }}=3.3 \mathrm{~V}$ or $2.5 \mathrm{~V} \pm 5 \%$			150	$\mu \mathrm{A}$
		OE	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ or $2.5 \mathrm{~V} \pm 5 \%$			5	$\mu \mathrm{A}$
${ }_{1}$	Input Low Current	$\begin{aligned} & \text { CLK, CLK_ } \\ & \text { SEL[0:1] } \end{aligned}$	$V_{\text {DD }}=3.3 \mathrm{~V}$ or $2.5 \mathrm{~V} \pm 5 \%$	-5			$\mu \mathrm{A}$
		OE	$\mathrm{V}_{\text {D }}=3.3 \mathrm{~V}$ or $2.5 \mathrm{~V} \pm 5 \%$	-150			$\mu \mathrm{A}$
$V_{\text {он }}$	Output HighVoltage		$\mathrm{V}_{\text {DDo }}=3.3 \mathrm{~V} \pm 5 \%$; NOTE 1	2.6			V
			$\mathrm{V}_{\text {DDO }}=2.5 \mathrm{~V} \pm 5 \%$; NOTE 1	1.8			V
			$\mathrm{V}_{\text {Doo }}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$; NOTE 1	1.2			V
V_{o}	Output Low Voltage		$\mathrm{V}_{\text {DOO }}=3.3 \mathrm{~V} \pm 5 \%$; NOTE 1			0.6	V
			$\mathrm{V}_{\text {DDo }}=2.5 \mathrm{~V} \pm 5 \%$; NOTE 1			0.5	V
			$\mathrm{V}_{\text {DDo }}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}$; NOTE 1			0.4	V

NOTE 1: Outputs terminated with 50Ω to $\mathrm{V}_{\text {doo }} / 2$. See Parameter Measurement section, "Load Test Circuit" diagrams.
Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation / cut		Fundamental			
Frequency		10		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				1	mW

Table 6A. AC Characteristics, $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDO}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {max }}$	Output Frequency	w/external XTAL		10		40	MHz
		w/external CLK				200	MHz
$\mathrm{tp}_{\text {LH }}$	Propagation Delay, Low-to-High; NOTE 1			1.4	2.0	2.6	ns
tsk(o)	Output Skew; NOTE 2					70	ps
$t s k(p p)$	Part-to-Part Skew; NOTE 2, 3					700	ps
tijit(Ø)	RMS Phase Jitter, Random; NOTE 4		25MHz XTAL, (12kHz-10MHz)		0.39		ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time		20\% to 80\%	200		800	ps
odc	Output Duty Cycle	w/external XTAL	$f \leq 38.88 \mathrm{MHz}$	45		55	\%
		w/external CLK	$f \leq 133 \mathrm{MHz}$	47		53	\%
t_{EN}	Output Enable Time; NOTE 5					10	ns
$\mathrm{t}_{\mathrm{ols}}$	Output Disable Time; NOTE 5					10	ns

NOTE 1: Measured from $\mathrm{V}_{\text {oo }} / 2$ of the input to $\mathrm{V}_{\text {Do }} / 2$ of the output.
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at $\mathrm{V}_{\text {Doo }} / 2$.
NOTE 4: Phase jitter is dependent on the input source used.
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6B. AC Characteristics, $\mathrm{V}_{\mathrm{do}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{dod}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ то $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {max }}$	Output Frequency	w/external XTAL		10		40	MHz
		w/external CLK				200	MHz
$\mathrm{tp}_{\text {LН }}$	Propagation Delay, Low-to-High; NOTE 1			1.5	2.1	2.7	ns
tsk(o)	Output Skew; NOTE 2					70	ps
$t s k(p p)$	Part-to-Part Skew; NOTE 2, 3					700	ps
tijit(Ø)	RMS Phase Jitter, Random; NOTE 4		25MHz XTAL, (12kHz-10MHz)		0.42		ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time		20\% to 80\%	200		800	ps
odc	Output Duty Cycle	w/external XTAL	$f \leq 38.88 \mathrm{MHz}$	45		55	\%
		w/external CLK	$f \leq 133 \mathrm{MHz}$	47		53	\%
t_{EN}	Output Enable Time; NOTE 5					10	ns
t_{ol}	Output Disable Time; NOTE 5					10	ns

NOTE 1: Measured from $\mathrm{V}_{\text {Do }} / 2$ of the input to $\mathrm{V}_{\text {Doo }} / 2$ of the output.
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at $\mathrm{V}_{\text {Doo }} / 2$. NOTE 4: Phase jitter is dependent on the input source used.
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6C. AC Characteristics, $\mathrm{V}_{\mathrm{dd}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\text {do }}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {max }}$	Output Frequency	w/external XTAL		10		40	MHz
		w/external CLK				200	MHz
$\mathrm{tp}_{\text {LH }}$	Propagation Delay, Low-to-High; NOTE 1			1.6	2.4	3.2	ns
tsk(o)	Output Skew; NOTE 2					70	ps
$t \mathrm{sk}(\mathrm{pp})$	Part-to-Part Skew; NOTE 2, 3					700	ps
tjit(б)	RMS Phase Jitter, Random; NOTE 4		25MHz XTAL, (12kHz-10MHz)		0.43		ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time		20\% to 80\%	200		800	ps
odc	Output Duty Cycle	w/external XTAL	$f \leq 38.88 \mathrm{MHz}$	45		55	\%
		w/external CLK	$f \leq 133 \mathrm{MHz}$	47		53	\%
t_{EN}	Output Enable Time; NOTE 5					10	ns
$\mathrm{t}_{\text {dis }}$	Output Disable Time; NOTE 5					10	ns

NOTE 1: Measured from $\mathrm{V}_{\text {Do }} / 2$ of the input to $\mathrm{V}_{\text {Doo }} / 2$ of the output.
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at $\mathrm{V}_{\text {Doo }} / 2$.
NOTE 4: Phase jitter is dependent on the input source used.
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Table 6D. AC Characteristics, $\mathrm{V}_{\mathrm{Dd}}=\mathrm{V}_{\mathrm{dod}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ то $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {max }}$	Output Frequency	w/external XTAL		10		40	MHz
		w/external CLK				200	MHz
$\mathrm{tp}_{\text {LH }}$	Propagation Delay, Low-to-High; NOTE 1			1.7	2.4	3.1	ns
tsk(o)	Output Skew; NOTE 2					70	ps
tsk(pp)	Part-to-Part Skew; NOTE 2, 3					700	ps
tjit(Ø)	RMS Phase Jitter, Random; NOTE 4		25MHz XTAL, (12kHz-10MHz)		0.44		ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time		20\% to 80\%	200		800	ps
odc	Output Duty Cycle	w/external XTAL	$f \leq 38.88 \mathrm{MHz}$	45		55	\%
		w/external CLK	$f \leq 133 \mathrm{MHz}$	47		53	\%
t_{EN}	Output Enable Time; NOTE 5					10	ns
$\mathrm{t}_{\text {dis }}$	Output Disable Time; NOTE 5					10	ns

NOTE 1: Measured from $\mathrm{V}_{\text {Do }} / 2$ of the input to $\mathrm{V}_{\text {Doo }} / 2$ of the output.
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at $\mathrm{V}_{\text {Doo }} / 2$.
NOTE 4: Phase jitter is dependent on the input source used.
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Renesns

Table 6E. AC Characteristics, $\mathrm{V}_{\mathrm{dD}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{ddo}}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ то $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {max }}$	Output Frequency	w/external XTAL		10		40	MHz
		w/external CLK				200	MHz
$\mathrm{tp}_{\text {LH }}$	Propagation Delay, Low-to-High; NOTE 1			1.7	2.6	3.5	ns
tsk(0)	Output Skew; NOTE 2					70	ps
$t s \mathrm{k}(\mathrm{pp})$	Part-to-Part Skew; NOTE 2, 3					700	ps
tjit(Ø)	RMS Phase Jitter, Random; NOTE 4		25MHz XTAL, (12kHz-10MHz)		0.37		ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time		20\% to 80\%	200		800	ps
odc	Output Duty Cycle	w/external XTAL	$f \leq 38.88 \mathrm{MHz}$	45		55	\%
		w/external CLK	$f \leq 133 \mathrm{MHz}$	47		53	\%
$\mathrm{t}_{\text {EN }}$	Output Enable Time; NOTE 5					10	ns
$\mathrm{t}_{\text {dis }}$	Output Disable Time; NOTE 5					10	ns

NOTE 1: Measured from $\mathrm{V}_{\text {Do }} / 2$ of the input to $\mathrm{V}_{\text {Doo }} / 2$ of the output.
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 3: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at $\mathrm{V}_{\text {Doo }} / 2$.
NOTE 4: Phase jitter is dependent on the input source used.
NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

Typical Phase Noise at 25MHz @ 3.3V/3.3V

Parameter Measurement Information

Parameter Measurement Information, continued

Application Information

Crystal Input Interface

Figure 1 shows an example of 83908l-02 crystal interface with a parallel resonant crystal. The frequency accuracy can be fine tuned by adjusting the C 1 and C 2 values. For a parallel crystal with loading capacitance $C L=18 \mathrm{pF}$, we suggest C 1 and C2 $=15 \mathrm{pF}$ to start with. These values may be slightly fine tuned further to optimize the
frequency accuracy for different board layouts. Slightly increasing the C 1 and C 2 values will slightly reduce the frequency. Slightly decreasing the C 1 and C 2 values will slightly increase the frequency. For the oscillator circuit below, R1 can be used, but is not required. For new designs, it is recommended that R1 not be used.

Figure 1. Crystal Input Interface

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in Figure 2. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10 ns . For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output
impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and making R2 50Ω.

Figure 2. General Diagram for LVCMOS Driver to XTAL Input Interface

Recommendations for Unused Input and Output Pins

InPuts:

CLK Input

For applications not requiring the use of the clock input, it can be left floating. Though not required, but for additional protection, a $1 \mathrm{k} \Omega$ resistor can be tied from the CLK input to ground.

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT should be tied to ground. Though not required, but for additional protection, a $1 \mathrm{k} \Omega$ resistor can be tied from XTAL_IN to ground and from XTAL_OUT to ground.

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1 \mathrm{k} \Omega$ resistor can be used.

Outputs:

LVCMOS Outputs

All unused LVCMOS output can be left floating. There should be no trace attached.

Reliability Information

Table 7. $\theta_{\text {ja }}$ vs. Air Flow Table for 24 Lead TSSOP

$\theta_{\text {JA }}$ by Velocity (Meters per Second)			
Multi-Layer PCB, JEDEC Standard Test Boards	$\begin{gathered} 0 \\ 87.8^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	$\begin{gathered} \mathbf{1} \\ 83.5^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	$\begin{gathered} 2.5 \\ 81.3^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$

Transistor Count

The transistor count for 83908l-02 is: 277

Package Outline and Dimensions

Package Outline - G Suffix for 24 Lead TSSOP

Table 8. Package Dimensions

SYMBOL	Millimeters		
	Minimum	Maximum	
N	24		
A	--	1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
c	0.09	0.20	
D	7.70	7.90	
E	4.30	4.50	
E1	0.65 BASIC		
e	0.45	0.75	
L	0°	8°	
α	--	0.10	
aaa			

Reference Document: JEDEC Publication 95, MO-153

Renesas

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
83908AGI-02LF	ICS83908AI02L	24 lead "Lead Free" TSSOP	Tube	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
83908AGI-02LFT	ICS83908AI02L	24 lead "Lead Free" TSSOP	Tape and Reel	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Renesns

Revision History Sheet

Rev	Table	Page	Description of Change	Date
A	T9	14	Ordering Information - removed leaded devices. Updated datasheet format.	$3 / 27 / 15$
A	T9	14	Ordering Information - Deleted LF note below table. Updated header and footer	$3 / 17 / 16$

RENESAS

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX

PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB3N2304NZDTR2G NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7

