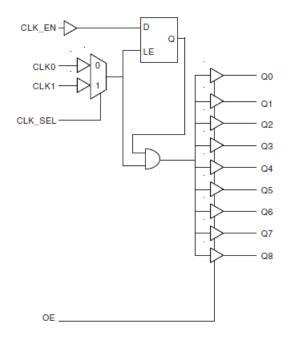
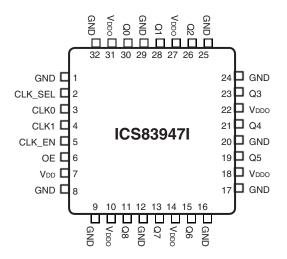


GENERAL DESCRIPTION


The 83947I is a low skew, 1-to-9 LVCMOS Fanout Buffer. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 9 to 18 byutilizing the ability of the outputs to drive two series terminated lines.

Guaranteed output and part-to-part skew characteristics make the 83947I ideal for high performance, single ended applications that also require a limited output voltage.

FEATURES


- 9 LVCMOS/LVTTL outputs
- Selectable CLK0 and CLK1 can accept the following input levels: LVCMOS and LVTTL
- Maximum output frequency: 110MHz
- Output skew: 500ps (maximum)
- Part-to-part skew: 2ns (maximum)
- 3.3V operating supply
- -40°C to 85°C ambient operating temperature
- Lead-Free package available

BLOCK DIAGRAM

PIN ASSIGNMENT

1

32-Lead LQFP
7mm x 7mm x 1.4mm package body
Y Package
Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1, 8, 9, 12, 16, 17, 20, 24, 25, 29, 32	GND	Power		Power supply ground.
2	CLK_SEL	Input	Pullup	Clock select input. When HIGH, selects CLK1. When LOW, selects CLK0. LVCMOS / LVTTL interface levels.
3, 4	CLK0, CLK1	Input	Pullup	Reference clock inputs. LVCMOS / LVTTL interface levels.
5	CLK_EN	Input	Pullup	Clock enable. LVCMOS / LVTTL interface levels.
6	OE	Input	Pullup	Output enable. LVCMOS / LVTTL interface levels.
7	V _{DD}	Power		Coree supply pin.
10, 14, 18, 22, 27, 31	$V_{_{\mathrm{DDO}}}$	Power		Output supply pins.
11, 13, 15, 19, 21, 23, 26, 28, 30	Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0	Output		Q0 thru Q8 clock outputs. LVCMOS / LVTTL interface levels.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance (per output)			25		pF
R _{PULLUP}	Input Pullup Resistor			51		ΚΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		ΚΩ
R _{OUT}	Output Impedance		5	7	12	Ω

TABLE 3. OUTPUT ENABLE AND CLOCK ENABLE FUNCTION TABLE

Contro	Output	
OE	CLK_EN	Q0:Q8
0	X	Hi-Z
1	0	LOW
1	1	Follows CLK input

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_I -0.5 V to V_{DD} + 0.5 V

Outputs, V_{O} -0.5V to V_{DDO} + 0.5V

Package Thermal Impedance, $\theta_{JA} - 47.9^{\circ}\text{C/W}$ (0 lfpm)

Storage Temperature, T_{STG} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Coret Supply Voltage		3.0	3.3	3.6	V
V _{DDO}	Output Supply Voltage		3.0	3.3	3.6	V
I _{DD}	Input Supply Current			33	50	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$, Ta = -40°C to 85°C

Symbol	Parameter	Parameter		Minimum	Typical	Maximum	Units
V _{IH}	Input High Volta	age		2		3.6	V
V _{IL}	Input Low Volta	ge				0.8	٧
I _{IN}	Input Current	CLK0, CLK1, CLK_SEL, OE, CLK_EN		-100			μA
V _{OH}	Output High Voltage		I _{OH} = -20mA	2.5			٧
V _{OL}	Output Low Voltage		I _{OL} = 20mA			0.4	٧

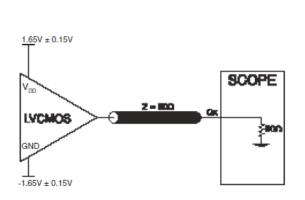
Table 5. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$, Ta = -40°C to 85°C

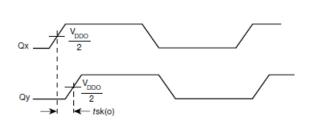
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency		110			MHz
t _{PD}	Propagation Delay, NOTE 1	CLK to Q	1.8		4.5	ns
tsk(o)	Output Skew; NOTE 2, 5	Measured on rising edge @V _{DDO} /2			500	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 5	Measured on rising edge @V _{DDO} /2			2	ns
t _{PW}	Output Pulse Width		tPeriod/2 - 800		tPeriod/2 + 800	ps
t _s	Clock Enable Setup Time; NOTE 6	CLK_EN to CLK	0			ns
t _H	Clock Enable Hold Time; NOTE 6	CLK_EN to CLK	1			ns
$t_{_{\rm ZL}}, t_{_{\rm ZH}}$	Output Enable Time; NOTE 4				11	ns
t_{LZ}, t_{HZ}	Output Disable Time; NOTE 4				11	ns
t _R	Output Rise Time	0.8V to 2.0V	0.2		1	ns
t _F	Output Fall Time	0.8V to 2.0V	0.2		1	ns

All parameters measured at f_{MAX} unless noted otherwise. NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

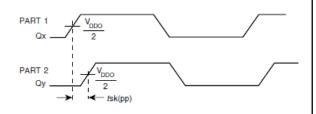
Measured at V_{ppg}/2.

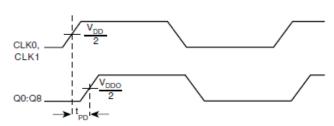
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{ppq}/2$.


NOTE 4: These parameters are guaranteed by characterization. Not tested in production.

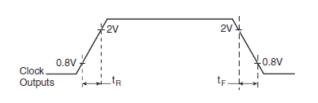

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

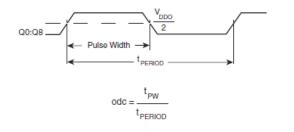
NOTE 6: Setup and Hold times are relative to the rising edge of the input clock.


PARAMETER MEASUREMENT INFORMATION



3.3V OUTPUT LOAD AC TEST CIRCUIT





PART-TO-PART SKEW

PROPAGATION DELAY

OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

RELIABILITY INFORMATION

Table 6. $\theta_{\rm JA}{\rm vs.}$ Air Flow Table for 32 Lead LQFP

θJA by Velocity (Linear Feet per Minute)

 0
 200
 500

 Single-Layer PCB, JEDEC Standard Test Boards
 67.8°C/W
 55.9°C/W
 50.1°C/W

 Multi-Layer PCB, JEDEC Standard Test Boards
 47.9°C/W
 42.1°C/W
 39.4°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for 83947l is: 1040

PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP

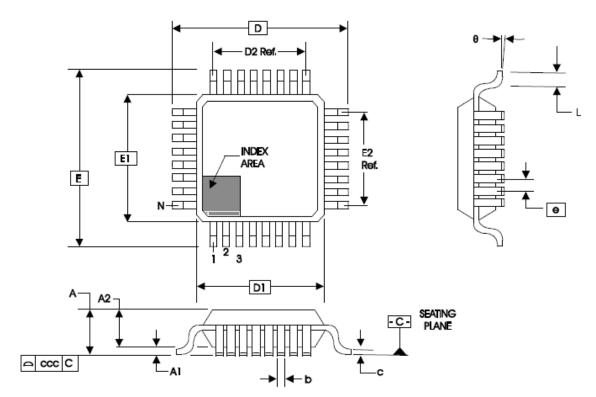


TABLE 7. PACKAGE DIMENSIONS

	JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS						
SYMBOL	ВВА						
STWIBOL	MINIMUM	NOMINAL	MAXIMUM				
N		32					
Α			1.60				
A1	0.05		0.15				
A2	1.35	1.40	1.45				
b	0.30	0.37	0.45				
С	0.09		0.20				
D		9.00 BASIC					
D1		7.00 BASIC					
D2		5.60 Ref.					
E		9.00 BASIC					
E1		7.00 BASIC					
E2		5.60 Ref.					
е		0.80 BASIC					
L	0.45	0.60	0.75				
θ	0°	0° 7°					
ccc			0.10				

Reference Document: JEDEC Publication 95, MS-026

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
83947AYILN	ICS3947AYIN	32 Lead "Lead-Free/Annealed" LQFP	tray	-40°C to 85°C
83947AYILNT	ICS3947AYIN	32 Lead "Lead-Free/Annealed" LQFP	Tape & Reel	-40°C to 85°C

	REVISION HISTORY SHEET					
Rev	Table	Page	Description of Change	Date		
А	T5	4	AC Characterisitics Table, $\rm t_s$ and $\rm t_H$ rows- revised Test Conditions to read CLK_EN to CLK.	6/21/02		
		1	Added Lead Free bullet in Features section.			
В	T2	2	Pin Characteristics Table - changed C_{IN} from 4pF max. to 4pF min. R_{OUT} added 5Ω min and 12Ω max.	10/11/04		
	Т8	8	Ordering Information Table - add Lead-Free part. Updated format throughout data sheet.			
В	Т8	8 10	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	8/9/10		
В	T8	8	Updated datasheet format Ordering information - removed leaded part numbers - PDN CQ-13-02 expired	11/10/14		
В			Removed ICS from part number where needed. Updated header and footer.	3/17/16		

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Drivers & Distribution category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG ISPPAC-CLK5520V-01T100C 6EP1332-1SH71 6ES7231-4HD32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9513BCPZ AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I