General Description

The 840001I-25 is a General Purpose Clock Generator and a member of the family of high performance devices from IDT. The $840001 \mathrm{l}-25$ can accept frequency from a 22.4 MHz to 170 MHz and generate a 22.4 MHz to 170 MHz output. The $840001 \mathrm{I}-25$ has excellent phase jitter performance, from $637 \mathrm{kHz}-10 \mathrm{MHz}$ integration range. The 8400011-25 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

Features

- One LVCMOS/LVTTL output, 15Ω output impedence
- Output frequency range: $22.4 \mathrm{MHz}-170 \mathrm{MHz}$
- VCO range: 560 MHz to 680 MHz
- RMS phase jitter @ $125 \mathrm{MHz}(637 \mathrm{kHz}-10 \mathrm{MHz}): 0.36 \mathrm{ps}$ (typical)
- Full 3.3V or 2.5 V operating supply
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient operating temperature
- Available in lead-free (RoHS 6) package

Commonly Used Frequency Table

Inputs						Output Frequency (MHz)
SEL2	SEL1	SEL0	M Divider	N Divider	REF_IN (MHz)	Q
0	0	0	25	25	25	25
0	0	1	10	25	62.5	25
0	1	0	4	25	156.25	25
0	1	1	5	25	125	25
1	0	0	10	10	62.5	62.5
1	0	1	5	5	125	125
1	1	0	4	4	156.25	156.25
1	1	1	10	25	62.5	25 (default)

Block Diagram

Pin Assignment

8400011-25

8-Lead TSSOP
$4.40 \mathrm{~mm} \times 3.0 \mathrm{~mm} \times 0.925 \mathrm{~mm}$ package body

$$
\begin{aligned}
& \text { G Package } \\
& \text { Top View }
\end{aligned}
$$

Table 1. Pin Descriptions

Number	Name	Type		Description
1	$\mathrm{~V}_{\mathrm{bd}}$	Power		Positive supply pin.
2	REF_IN	Input	Pullup	Reference input frequency. LVCMOS/LVTTL interface levels.
$3,4,5$	SEL_0, SEL_1, SEL_2	Input	Pullup	M and N configuration select pins. LVCMOS/LVTTL interface levels.
6	GND	Power		Power supply ground.
7	$\mathrm{~V}_{\mathrm{bod}}$	Power		Output supply pin.
8	Q	Output		Single-ended clock output. LVCMOS/LVTTL interface levels. 15Ω output impedance.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDD}}=3.465 \mathrm{~V}$		6		pF
	Input Pullup Resistor	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDO}}=2.625 \mathrm{~V}$		5	pF	
$\mathrm{R}_{\text {out }}$	Output Impedance			51		$\mathrm{k} \Omega$

Absolute Maximum Ratings

Supply Voltage, V_{DD}	4.6 V
Inputs, V_{1}	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Outputs, V_{0}	-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5 \mathrm{~V}$
Package Thermal Impedance, θ_{JA}	$129.5^{\circ} \mathrm{C} / \mathrm{W}(0 \mathrm{mps})$
Storage Temperature, $\mathrm{T}_{\mathrm{STG}}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{dd}}=\mathrm{V}_{\mathrm{ddo}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
$\mathrm{~V}_{\mathrm{DDO}}$	Output Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Power Supply Current				83	mA
$\mathrm{I}_{\mathrm{DDO}}$	Output Supply Current	No Load			2	mA

Table 3B. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{Dd}}=\mathrm{V}_{\mathrm{dod}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{V}_{D D}$	Positive Supply Voltage		2.375	2.5	2.625	V
$\mathrm{~V}_{D D 0}$	Output Supply Voltage		2.375	2.5	2.625	V
$I_{D D}$	Power Supply Current				80	mA
$I_{D D O}$	Output Supply Current	No Load			2	mA

Table 3C. LVCMOS/LVTTL DC Characteristics, $\mathrm{V}_{\mathrm{Dd}}=\mathrm{V}_{\mathrm{Ddo}}=3.3 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V_{H}	Input High Voltage		$\mathrm{V}_{\text {Do }}=3.465 \mathrm{~V}$	2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
			$\mathrm{V}_{\text {DD }}=2.625 \mathrm{~V}$	1.7		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
V_{u}	Input Low Voltage		$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}$	-0.3		0.8	V
			$\mathrm{V}_{\mathrm{DD}}=2.625 \mathrm{~V}$	-0.3		0.7	V
$\mathrm{I}_{\text {H }}$	Input High Current	$\begin{aligned} & \text { REF_IN, } \\ & \text { SEL_[0:2] } \end{aligned}$	$\mathrm{V}_{\text {DD }}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$ or 2.625 V			5	$\mu \mathrm{A}$
${ }_{\text {I }}$	Input Low Current	$\begin{aligned} & \text { REF_IN, } \\ & \text { SEL_[0:2] } \end{aligned}$	$\mathrm{V}_{\text {DD }}=3.465 \mathrm{~V}$ or $2.625 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$
$\mathrm{V}_{\text {он }}$	Output High Voltage; NOTE 1		$\mathrm{V}_{\text {DOO }}=3.465 \mathrm{~V}$	2.6			V
			$\mathrm{V}_{\text {DDO }}=2.625 \mathrm{~V}$	1.8			V
V_{0}	Output Low Voltage; NOTE 1		$\mathrm{V}_{\text {odo }}=3.465 \mathrm{~V}$ or 2.625 V			0.6	V

NOTE 1: Outputs terminated with 50Ω to $\mathrm{V}_{\text {odo }} / 2$. See Parameter Measurement Information Section, "Output Load Test Circuit" diagrams.

Table 4A. AC Characteristics, $\mathrm{V}_{\mathrm{dD}}=\mathrm{V}_{\text {doo }}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ тo $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {out }}$	Output Frequency		22.4		170	MHz
$\mathrm{tjit}(\varnothing)$	RMS Phase Jitter (Random); NOTE 1	125 MHz, Integration Range: 637 kHz	-10 MHz	0.37		ps
	156.25 MHz, Integration Range: $637 \mathrm{kHz}-10 \mathrm{MHz}$		0.38		ps	
	Output Rise/Fall Time	20% to 80%	150		650	ps
odc	Output Duty Cycle		47		53	$\%$

NOTE 1: Please refer to the Phase Noise Plot.

Table 4B. AC Characteristics, $\mathrm{V}_{\mathrm{dD}}=\mathrm{V}_{\mathrm{Ddo}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ тo $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {Out }}$	Output Frequency		22.4		170	MHz
tjit(Ø)	RMS Phase Jitter (Random); NOTE 1	125MHz, Integration Range: 637 kHz - 10MHz		0.36		ps
		156.25MHz, Integration Range: $637 \mathrm{kHz}-10 \mathrm{MHz}$		0.35		ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time	20\% to 80\%	150		650	ps
odc	Output Duty Cycle		47		53	\%

NOTE 1: Please refer to the Phase Noise Plot.

Parameter Measurement Information

Application Information

Recommendations for Unused Input Pins

InPuts:

LVCMOS Control Pins:

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection.
A $1 \mathrm{k} \Omega$ resistor can be used.

Power Considerations

This section provides information on power dissipation and junction temperature for the 8400011-25.
Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the $8400011-25$ is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+5 \%=3.465 \mathrm{~V}$, which gives worst case results.

Core and Output Power Dissipation

- Power (core, output) $=\mathrm{V}_{\text {DD_MAX }}{ }^{*}\left(I_{D D}+I_{\text {DDO }}\right)=3.465 \mathrm{~V} *(83 \mathrm{~mA}+2 \mathrm{~mA})=\mathbf{2 9 4 . 5 m W}$

LVCMOS Output Power Dissipation

- Output Impedance $\mathrm{R}_{\text {out }}$ Power Dissipation due to Loading 50Ω to $\mathrm{V}_{\text {Doo }} / 2$

Output Current $\mathrm{I}_{\text {OUT }}=\mathrm{V}_{\text {DDO_MAX }} /\left[2^{*}\left(50 \Omega+\mathrm{R}_{\text {out }}\right)\right]=3.465 \mathrm{~V} /[2$ * $(50 \Omega+15 \Omega)]=\mathbf{2 6 . 6 m A}$

- Power Dissipation on the $\mathrm{R}_{\text {out }}$ per LVCMOS output
$\operatorname{Power}\left(R_{\text {out }}\right)=R_{\text {out }}{ }^{*}\left(I_{\text {out }}\right)^{2}=15 \Omega *(26.6 \mathrm{~mA})^{2}=10.6 \mathrm{~mW}$ per output
- Dynamic Power Dissipation at 156.25 MHz

Power $(156.25 \mathrm{MHz})=\mathrm{C}_{\mathrm{PD}}{ }^{*}$ Frequency * $\left(\mathrm{V}_{\mathrm{DDO}}\right)^{2}=6 \mathrm{pF}{ }^{*} 156.25 \mathrm{MHz}{ }^{*}(3.465 \mathrm{~V})^{2}=\mathbf{1 1 . 2 6 m W}$ per output

Total Power Dissipation

- Total Power
$=$ Power (core, output) + Power Dissipation ($\mathrm{R}_{\text {out }}$) + Dyamic Power Dissipation (156.25MHz)
$=294.5 \mathrm{~mW}+10.6 \mathrm{~mW}+11.26 \mathrm{~mW}$
$=316.4 \mathrm{~mW}$

Renesns

2. Junction Temperature.

Junction temperature, Tj , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS ${ }^{\text {TM }}$ devices is $125^{\circ} \mathrm{C}$.

The equation for Tj_{j} is as follows: $\mathrm{Tj}=\theta_{\mathrm{JA}}$ * Pd _total $+\mathrm{T}_{\mathrm{A}}$
$\mathrm{Tj}=$ Junction Temperature
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
$T_{A}=$ Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is $125.5^{\circ} \mathrm{C} / \mathrm{W}$ per Table 5 .

Therefore, Tj for an ambient temperature of $85^{\circ} \mathrm{C}$ with all outputs switching is:
$85^{\circ} \mathrm{C}+0.316 \mathrm{~W} * 125.5^{\circ} \mathrm{C} / \mathrm{W}=124.7^{\circ} \mathrm{C}$. This is below the limit of $125^{\circ} \mathrm{C}$.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (multi-layer).

Table 5. Thermal Resistance θ_{ja} for 8-Lead TSSOP, Forced Convection

θ_{JA} by Velocity (Meters Per Second)

	$\mathbf{0}$	$\mathbf{1}$	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	$129.5^{\circ} \mathrm{C} / \mathrm{W}$	$125.5^{\circ} \mathrm{C} / \mathrm{W}$	$123.5^{\circ} \mathrm{C} / \mathrm{W}$

Reliability Information

Table 6. $\theta_{\text {JA }}$ vs. Air Flow Table for 8 Lead TSSOP

θ_{JA} by Velocity (Meters Per Second)				
Multi-Layer PCB, JEDEC Standard Test Boards	$129.5^{\circ} \mathrm{C} / \mathrm{W}$	$125.5^{\circ} \mathrm{C} / \mathrm{W}$	$123.5^{\circ} \mathrm{C} / \mathrm{W}$	

Transistor Count

The transistor count for $8400011-25$ is: 2588

Package Outline and Package Dimensions

Package Outline - G Suffix for 8 Lead TSSOP

Reference Document: JEDEC Publication 95, MO-153

Renesas

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
840001BGI-25LF	BI25L	8 lead "Lead Free" TSSOP	tube	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
840001BGI-25LFT	BI 25 L	8 lead "Lead Free" TSSOP	tape \& reel	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Renesas

Revision History Sheet

Rev	Table	Page	Description of Change	Date
A	T8	11	Ordering Information - removed leaded devices. Updated data sheet format.	$7 / 29 / 15$
A	T8	1		
11	General Description - removed Hiperclocks. Ordering Information - removed Lead Free note below the table. Updated header and footer.	$1 / 15 / 16$		

RENESAS

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Synthesizer/Jitter Cleaner category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MPC9230EIR2 PL902166USY 954204CGLF 9LPRS485DGLF PL902167USY 8V19N490ABDGI LMK04821NKDT CDCE937QPWRQ1 PI6CX201ALE 9LPRS355BGLF CDCEL913IPWRQ1 ABMJB-903-101UMG-T5 ABMJB-903-150UMG-T5 ABMJB-903-151UMG-T5 AD9542BCPZ AD9578BCPZ 9FG104EFILF 9FG104EFLF 308RILF 840001BGI-25LF 843004AGLF 843801AGI-24LF 844004BGI-01LF 844S42BKILF 8A34044C-000NLG 954226AGLF 9FG108EFLF 9LPR363EGLF 9LPRS355BKLF 9LPRS365BGLF GS4915-INE3 9DB306BLLF ABMJB-902-155USY-T5 ABMJB-902-156USY-T5 ABMJB-902-Q76USY-T5 ABMJB-902-Q82USY-T5 ABMJB-902-104USY-T5 ABMJB-902-153USY-T5 ABMJB-902-154USY-T5 ABMJB-902-Q42USY-T5 ABMJB-902-Q57USY-T5 ABMJB-902-Q74USY-T5 ABMJB-902-Q78USY-T5 LTC6951IUHF-1\#PBF 650GI-44LF 8430252CGI-45LF 8432DYI-101LF 84329BYLF 8432DY101LF 8432BY-51LF

