General Description

The 840NT4 is a PLL-based clock generator designed to interface with Freescale B4/T4 Processor systems. The clock generator offers low jitter, low-skew clock outputs, frequency margining (0.025 -0.312MHz step granularity), and spread spectrum clocking that meets the ever-growing demands of Freescale's next generation processors.

- Selectable input reference: crystal oscillator interface or differential LVPECL input

one RTC output, and one 25MHz reference clock

• Ten LVCMOS clock outputs: four system clocks, four DDR clocks,

- Output Frequency Range: 25MHz 200MHz
- Serial Interface: I²C programmable
- Frequency Margining in <0.312MHz steps
- Spread spectrum for EMI reduction
- VCO range: 2GHz 2.4GHz
- Voltage supply modes:

Core (V_{DD}, V_{DDXTAL}, V_{DDA}) all core voltages must be identical Output (V_{DDO A}, V_{DDO B}, V_{DDO C}, V_{DDO REF0}, V_{DDO REF1}) Core / Output

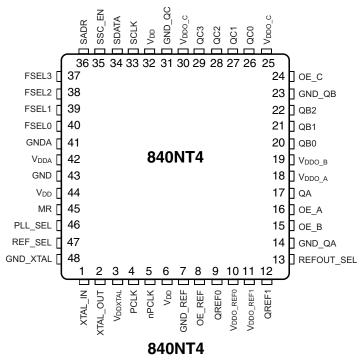
3.3V / 3.3V

Features

3.3V / 2.5V

3.3V / 1.8V

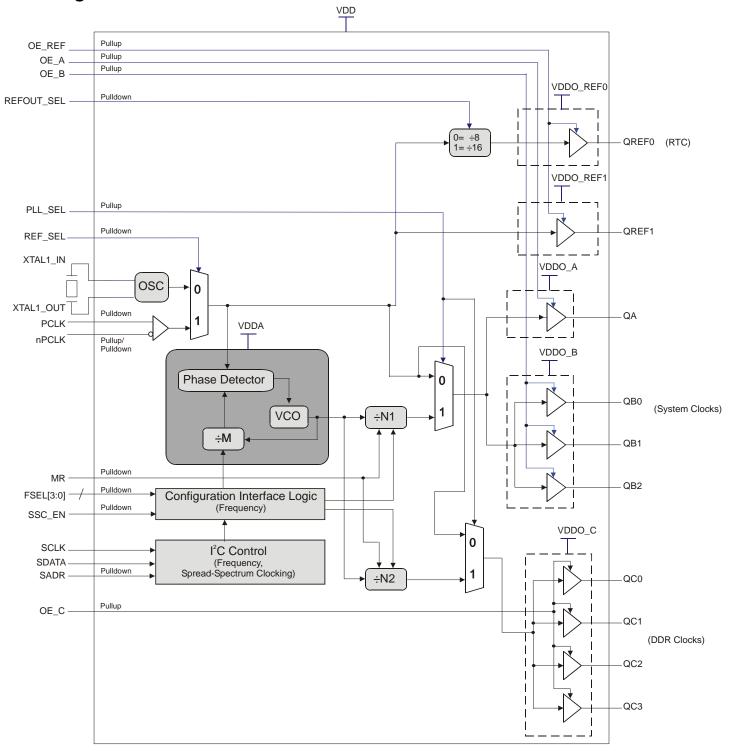
2.5V / 2.5V


2.5V / 1.8V

- Output voltage levels are independently selectable
- -40°C to 85°C ambient operating temperature
- · Lead-free (RoHS 6) packaging

Output Frequency Reference Table

XTAL (MHz)	FSEL[3:0]	SYSCLK QA & QB (MHz)	DDRCLK QC (MHz)		
25	0000	66.67	66.67		
25	0001	66.67	100		
25	0010	66.67	125		
25	0011	66.67	133.33		
25	0100	100	66.67		
25	0101	100	100		
25	0110	100	125		
25	0111	100	133.33		
25	1000	125	66.67		
25	1001	125	100		
25	1010	125	125		
25	1011	125	133.33		
25	1100	133.33	66.67		
25	1101	133.33	100		
25	1110	133.33	125		
25	1111	133.33	133.33		


Pin Assignment

48-lead, 7.0mm x 7.0mm VFQFN

Block Diagram

Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Ту	ре	Description
1, 2	XTAL_IN XTAL_OUT	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
6, 32, 44	V _{DD}	Power		Core supply pins.
3	V _{DDXTAL}	Power		Power supply pin for crystal oscillator.
4	PCLK	Input	Pulldown	Non-inverting external 25MHz differential LVPECL reference input. LVPECL input levels.
5	nPCLK	Input	Pullup/ Pulldown	Inverting external 25MHz differential LVPECL reference input. LVPECL input levels.
7	GND_REF	Power		Power supply ground for QREF clock outputs.
8	OE_REF	Input	Pullup	Output enable for QREFx clock outputs. The QREFx outputs are placed in a high-impedance mode on disable. LVCMOS/LVTTL interface levels.
9	QREF0	Output		Single-ended RTC clock output. LVCMOS/LVTTL interface levels.
10, 11	V _{DDO_REF0} , V _{DDO_REF1}	Power		Output power supply for QREF0 and QREF1 outputs.
12	QREF1	Output		Single-ended reference clock output. LVCMOS/LVTTL interface levels.
13	REFOUT_SEL	Input	Pulldown	Selects the real-time clock output frequency as defined in Table 3B. LVCMOS/LVTTL interface levels.
14	GND_QA	Power		Power supply ground for QA outputs.
15	OE_B	Input	Pullup	Output enable for Bank QBx clock outputs. The output bank is placed in a high-impedance mode on disable. LVCMOS/LVTTL interface levels.
16	OE_A	Input	Pullup	Output enable for QA clock output. The QA output is placed in a high-impedance mode on disable. LVCMOS/LVTTL interface levels.
17	QA	Output		Single-ended system clock output. LVCMOS interface levels.
18	V_{DDO_A}	Power		Output power supply for QA clock output.
19	V_{DDO_B}	Power		Output power supply for Bank QBx clock outputs.
20, 21, 22	QB0, QB1, QB2	Output		Single-ended system clock outputs. LVCMOS/ LVTLL interface levels.
23	GND_QB	Power		Power supply ground for QB outputs.
24	OE_C	Input	Pullup	Output enable for Bank C outputs. The output bank is placed in a high-impedance mode on disable. LVCMOS/LVTTL interface levels.
25, 30	V _{DDO_C}	Power		Output power supply for Bank QCx outputs.
26, 27, 28, 29	QC0, QC1, QC2, QC3	Output		Single-ended DDR clock outputs. LVCMOS/ LVTLL interface levels.
31	GND_QC	Power		Power supply ground for QC outputs.
33	SCLK	Input		I ² C clock input. LVCMOS/LVTTL interface levels.
34	SDATA	Input		I ² C data input/ output. Input: LVCMOS/ LVTLL interface levels. Output: open drain.
35	SSC_EN	Input	Pulldown	SSC control pin. SSC is enabled when SSC_EN is HIGH. LOW disables SSC. See Table 3C. LVCMOS/LVTTL interface levels.
36	SADR	Input	Pulldown	I ² C unique address select pin. LVCMOS/LVTTL interface levels.

Table 1. Pin Descriptions

Number	Name	Ту	ре	Description
37, 38, 39, 40	FSEL3, FSEL2, FSEL1, FSEL0	Input	Pulldown	Selects the System and DDR clock output frequencies as defined in Table 3A. LVCMOS/LVTTL interface levels. Overridden when in Frequency Margining mode (I ² C).
41	GNDA	Power		Power supply ground for PLL analog.
42	V_{DDA}	Power		Analog supply pin.
43	GND	Power		Power supply ground.
45	MR	Input	Pulldown	Master Reset. Forces QA, Bank B and Bank C outputs to a logic low. Does not affect REF_OUT. LVCMOS/LVTTL interface levels.
46	PLL_SEL	Input	Pullup	Selects the clock signal that drives the output banks. When LOW, deselects the PLL (PLL Bypass). When HIGH, selects the PLL (PLL enable). LVCMOS/LVTTL interface levels.
47	REF_SEL	Input	Pulldown	Select input for XTAL (LOW) or PCLK, nPCLK (HIGH). LVCMOS/LVTTL interface levels.
48	GND_XTAL	Power		Power supply ground for XTAL.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance	SSC_EN, SADR, MR, REFOUT_SEL, OE_REF, FSEL[3:0], REF_SEL, PLL_SEL, OE_A, OE_B, OE_C			4		pF
		V _{DDO_X} = 3.465V		15		pF	
	Power Dissipa Capacitance (V _{DDO_X} = 2.625V		14		pF
	,	,	$V_{DDO_X} = 1.89V$		14		pF
R _{PULLUP}	Input Pullup R	esistor			51		kΩ
R _{PULLDOWN}	Input Pulldowr	n Resistor			51		kΩ
			$V_{DDO_X} = 3.3V \pm 5\%$		15		Ω
R _{OUT}	Output Impeda	ance	$V_{DDO_X} = 2.5V \pm 5\%$		19		Ω
			$V_{DDO_X} = 1.8V \pm 5\%$		28		Ω

 $\mathsf{NOTE} \colon \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{X}} \mathsf{ denotes}, \, \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{A},} \, \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{B},} \, \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{C},} \, \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{REF0},} \, \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{REF1}}.$

Function Tables

Table 3A. System & DDR Clock Output Frequency Select Table, FM_EN = "0"

XTAL (MHz)	FSEL[3:0]	System Clocks (MHz) QA & QB[2:0]	DDR Clocks (MHz) QC[3:0]		
25	0000 (default)	66.67	66.67		
25	0001	66.67	100		
25	0010	66.67	125		
25	0011	66.67	133.33		
25	0100	100	66.67		
25	0101	100	100		
25	0110	100	125		
25	0111	100	133.33		
25	1000	125	66.67		
25	1001	125	100		
25	1010	125	125		
25	1011	125	133.33		
25	1100	133.33	66.67		
25	1101	133.33	100		
25	1110	133.33	125		
25	1111	133.33	133.33		

Table 3B. RTC Output Frequency Select Table

XTAL (MHz)	REFOUT_SEL	Output Divider	QREF0 (MHz)	QREF1 (MHz)
25	0 (default)	÷8	3.125	25
25	1	÷16	1.5625	25

Table 3C. SSC Control Settings

XTAL (MHz)	SSC_EN	SSC Profile
25	0 (default)	SSC Off
25	1*	Typical -0.5% down-spread, 30kHz – 32kHz, triangular waveform

NOTE: *SSC_EN = 1. Disables M divider programming when frequency margining is also enabled. N divider programming is still available.

Principles of Operation

Output frequencies are synthesized from an external 25MHz LVPECL or crystal (f_{XTAL}) input. The device contains a 11-bit PLL feedback divider (M) with a prescaler (P) and an 7-bit output divider (N). The output frequency f_{OUT} is calculated using the following equation:

$$f_{OUT} = f_{XTAL} \cdot \frac{M}{P \cdot N}$$

or

$$f_{OUT} = PCLK \cdot \frac{M}{P \cdot N}$$

The *M* and *N* PLL-dividers have corresponding I²C registers. These registers can be directly programmed to allow for frequency margining. (See Tables 4E, 4F, 4G, & 4H).

Each I²C configuration register has a default setting determined by the FSEL[3:0] strap pins. The default setting is automatically loaded into the registers (defined in Table 4D) at power up and with the release of MR.

Frequency Margining

The M and N registers are normally configured at power up by the state of the FSEL[3:0] pins. These registers can be overwritten by setting the FM_EN bit to a 1 and then directly writing desired values to the M and N registers. Frequency margining is only allowed with SSC disabled. Enabling SSC will block direct user programming of the M and N registers. See Tables 4F, 4G and 4H for M and N divider coding.

Register Settings

Table 4A. I²C Device Slave Address

1	1	0	0	0	0	SADR	R/W
---	---	---	---	---	---	------	-----

Table 4B. Block Write Operation

Description	START	Slave Address	Write Bit R/W(0)	ACK	Register Byte Pointer (BP)	ACK	Data Byte (for Register BP)	ACK	Data Byte (for Register BP+1)	ACK	Data Byte (for Register BP+)	ACK	STOP
Length (bits)	1	7	1	1	8	1	8	1	8	1	8	1	1

Table 4C. Block Read Operation

Description	START	Slave Address	Read Bit R/W(1)	ACK	Register Byte Pointer (BP)	ACK	Data Byte (for Register BP)	ACK	Data Byte (for Register BP+1)	ACK	Data Byte (for Register BP+)	ACK	STOP
Length (bits)	1	7	1	1	8	1	8	1	8	1	8	1	1

Table 4D. I²C Register Map

Register	Binary Register	Power Up Default D[7:0]		ult Register Bit								
Byte	Address	Binary	Decimal	D7	D6	D5	D4	D3	D2	D1	D0	
0	00000000	00011110	N1 = 30	Reserved	N1[6]	N1[5]	N1[4]	N1[3]	N1[2]	N1[1]	Reserved	
1	00000001	00011110	N2 = 30	Reserved	N2[6]	N2[5]	N2[4]	N2[3]	N2[2]	N2[1]	Reserved	
2	00000010	01010000		M[10]	M[9]	M[8]	M[7]	M[6]	M[5]	M[4]	M[3]	
3	00000011	00000000	M = 640	M[2]	M[1]	M[0]	FM_EN	Reserved	Reserved	QREF1 Disabled	QREF0 Disabled	
4	00000100	00001011	11	QC3 Disabled	QC2 Disabled	QC1 Disabled	QC0 Disabled	Reserved	Reserved	Reserved	Reserved	

NOTE: The QREF[0:1], QCx disable bits can be programmed at any time to override and disable the OE_REF and OE_QC per individual outputs. This can be done whether SSC_OFF frequency margining is enabled or disabled. If the OE_REF or OE_QC are set to disable their respective outputs, the I²C bits cannot enable their respective outputs.

Table 4E. I²C Register Function Descriptions

Bits	Name	Function
M[10:0]	Integer Feedback Divider Register	Sets the feedback divider value. Can be set to a value of 4 to 1023. The minimum feedback value is 4. Programming 0x04 would yield a feedback divider of ÷4, 0x05 = ÷5, etc. It should also be noted that with a reference of 25MHz and internally fixed Pre-divider of 8, the values loaded into this register should be between 640 and 768 inclusively in order to remain at or above the minimum VCO frequency of 2.0GHz and at or below the maximum VCO frequency of 2.4GHz.
N1[7:0]	Output Divider Register	Sets the output divider for output banks A and B. See Tables 4G and 4H for the output divider coding.
N2[7:0]	Output Divider Register	Sets the output divider for output bank C. See Table 4G and 4H for the output divider coding.
FM_EN	Frequency Margin Enable Bit	This bit must be set to "1" in order to enable frequency margining using Bytes [3:0]. Spread spectrum must also be OFF in order to use frequency margining.

Table 4F. PLL Feedback (M) Divider Coding for frequency margin mode, FM_EN = "1"

Register Bit M[10:0]					
Binary	Decimal				
01100000000	768				
01011111111	767				
01011111110	766				
	<m, -1,="" -2,="" m+=""></m,>				
01010000010	642				
01010000001	641				
01010000000	640				

Table 4G. PLL Feedback (M) and Output (N) Divider Coding for frequency margin mode, FM_EN = "1"

XTAL or PCLK	Pre-scaler	Registe	er Bit				
(MHz)	(P)	M[10:0]	Nx[6:0]	M Divider	Nx Divider	fVCO (MHz)	f _{OUT} (MHz)
25	8	01100000000	0001100	768	12	2400	200.00
25	8	01010000000	0001100	640	12	2000	166.67
25	8	01100000000	0001110	768	14	2400	171.43
25	8	01010000000	0001110	640	14	2000	142.86
25	8	01100000000	0010000	768	16	2400	150.00
25	8	01010000000	0010000	640	16	2000	125.00
25	8	01100000000	0010010	768	18	2400	133.33
25	8	01010000000	0010010	640	18	2000	111.11
25	8	01100000000	0010100	768	20	2400	120.00
25	8	01010000000	0010100	640	20	2000	100.00
25	8	01100000000	0011000	768	24	2400	100.00
25	8	01010000000	0011000	640	24	2000	83.33
25	8	01100000000	0011100	768	28	2400	85.71
25	8	01010000000	0011100	640	28	2000	71.43
25	8	01100000000	0100000	768	32	2400	75.00
25	8	01010000000	0100000	640	32	2000	62.50
25	8	01100000000	0100110	768	38	2400	63.16
25	8	01010000000	0100110	640	38	2000	52.63
25	8	01100000000	0101100	768	44	2400	54.55
25	8	01010000000	0101100	640	44	2000	45.45
25	8	01100000000	0110100	768	52	2400	46.15
25	8	01010000000	0110100	640	52	2000	38.46
25	8	01100000000	0111110	768	62	2400	38.71
25	8	01010000000	0111110	640	62	2000	32.26
25	8	01100000000	1001000	768	72	2400	33.33
25	8	01010000000	1001000	640	72	2000	27.78
25	8	01100000000	1010000	768	80	2400	30.00
25	8	01010000000	1010000	640	80	2000	25.00

NOTE: x = 1 or 2.

NOTE: Nx Divider can only be even numbers 10 through 126.

NOTE: M and Nx dividers can be programmed to achieve granularity of 0.312MHz or finer.

Table 4H. PLL Output Divider (N) Coding for frequency margin mode, FM_EN = "1"

Register Bit		Output Freq	uency Range
Nx[6:0]	Nx Divider	f _{OUT,MIN} (MHz)	f _{OUT,MAX} (MHz)
0001100	12	166.67	200.00
0001110	14	142.86	171.43
0010000	16	125.00	150.00
0010010	18	111.11	133.33
0010100	20	100.00	120.00
0011000	24	83.33	100.00
0011100	28	71.43	85.71
0100000	32	62.50	75.00
0100110	38	52.63	63.16
0101100	44	45.45	54.55
0110100	52	38.46	46.15
0111110	62	32.26	38.71
1001000	72	27.78	33.33
1010000	80	25.00	30.00

NOTE: x = 1 or 2.

NOTE: Nx Divider can only be even numbers 10 through 126.

NOTE: M and Nx dividers can be programmed to achieve granularity of 0.312MHz or finer.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	3.63V
Inputs, V _I	
XTAL_IN	0V to 2V
Other Inputs	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DDO_X} + 0.5V
Junction Temperature, T _J	125°C
Storage Temperature, T _{STG}	-65°C to 150°C

NOTE: V_{DDO_X} denotes, V_{DDO_A} , V_{DDO_B} , V_{DDO_C} , V_{DDO_REF0} , V_{DDO_REF1} .

DC Electrical Characteristics

Table 5A. Power Supply DC Characteristics, $V_{DD} = V_{DDXTAL} = 3.3V \pm 5\%$, $V_{DDO} _{X} = 3.3V \pm 5\%$, $T_{A} = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.135	3.3	3.465	V
V_{DDXTAL}	XTAL Power Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		V _{DD} - 0.064	3.3	V _{DD}	V
V _{DDO_X}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current			136	149	mA
I _{DDXTAL}	XTAL Power Supply Current			40	44	mA
I _{DDA}	Analog Supply Current			27	32	mA
I _{DDO_X}	Output Supply Current	Outputs in High-Impedance		1	3	mA

 $\begin{aligned} & \text{NOTE: V}_{DDO_X} \text{ denotes, V}_{DDO_A}, \text{V}_{DDO_B}, \text{V}_{DDO_C}, \text{V}_{DDO_REF0}, \text{V}_{DDO_REF1}. \\ & \text{NOTE: I}_{DDO_X} \text{ denotes, I}_{DDO_A} + \text{I}_{DDO_B} + \text{I}_{DDO_C} + \text{I}_{DDO_REF0} + \text{I}_{DDO_REF1}. \end{aligned}$

Table 5B. Power Supply DC Characteristics, $V_{DD} = V_{DDXTAL} = 3.3V \pm 5\%$, $V_{DDO_X} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.135	3.3	3.465	٧
V _{DDXTAL}	XTAL Power Supply Voltage		3.135	3.3	3.465	٧
V_{DDA}	Analog Supply Voltage		V _{DD} – 0.064	3.3	V _{DD}	٧
V_{DDO_X}	Output Supply Voltage		2.375	2.5	2.625	٧
I _{DD}	Power Supply Current			136	149	mA
I _{DDXTAL}	XTAL Power Supply Current			40	44	mA
I _{DDA}	Analog Supply Current			27	32	mA
I _{DDO_X}	Output Supply Current	Outputs in High-Impedance		1	3	mA

 $\begin{aligned} & \text{NOTE: V}_{\text{DDO}_X} \text{ denotes, V}_{\text{DDO}_A}, \text{V}_{\text{DDO}_B}, \text{V}_{\text{DDO}_C}, \text{V}_{\text{DDO}_\text{REF0}}, \text{V}_{\text{DDO}_\text{REF1}}. \\ & \text{NOTE: I}_{\text{DDO}_X} \text{ denotes, I}_{\text{DDO}_A} + \text{I}_{\text{DDO}_B} + \text{I}_{\text{DDO}_C} + \text{I}_{\text{DDO}_\text{REF0}} + \text{I}_{\text{DDO}_\text{REF1}}. \end{aligned}$

Table 5C. Power Supply DC Characteristics, $V_{DD} = V_{DDXTAL} = 3.3V \pm 5\%$, $V_{DDO_X} = 1.8V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.135	3.3	3.465	V
V _{DDXTAL}	XTAL Power Supply Voltage		3.135	3.3	3.465	V
V_{DDA}	Analog Supply Voltage		V _{DD} - 0.064	3.3	V _{DD}	V
V_{DDO_X}	Output Supply Voltage		1.71	1.8	1.89	٧
I _{DD}	Power Supply Current			136	149	mA
I _{DDXTAL}	XTAL Power Supply Current			40	44	mA
I _{DDA}	Analog Supply Current			27	32	mA
I _{DDO_X}	Output Supply Current	Outputs in High-Impedance		1	2	mA

 $\begin{aligned} & \text{NOTE: V}_{DDO_X} \text{ denotes, V}_{DDO_A}, \text{ V}_{DDO_B}, \text{ V}_{DDO_C}, \text{ V}_{DDO_REF0}, \text{V}_{DDO_REF1}. \\ & \text{NOTE: I}_{DDO_X} \text{ denotes, I}_{DDO_A} + \text{I}_{DDO_B} + \text{I}_{DDO_C} + \text{I}_{DDO_REF0} + \text{I}_{DDO_REF1}. \end{aligned}$

Table 5D. Power Supply DC Characteristics, $V_{DD} = V_{DDXTAL} = V_{DDO_X} = 2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		2.375	2.5	2.625	V
V_{DDXTAL}	XTAL Power Supply Voltage		2.375	2.5	2.625	V
V_{DDA}	Analog Supply Voltage		V _{DD} - 0.056	2.5	V_{DD}	V
V_{DDO_X}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current			135	147	mA
I _{DDXTAL}	XTAL Power Supply Current			39	43	mA
I _{DDA}	Analog Supply Current			24	28	mA
I _{DDO_X}	Output Supply Current	Outputs in High-Impedance		1	3	mA

 $\begin{aligned} & \text{NOTE: V}_{\text{DDO}_{X}} \text{ denotes, V}_{\text{DDO}_A}, \text{ V}_{\text{DDO}_B}, \text{ V}_{\text{DDO}_C}, \text{V}_{\text{DDO}_\text{REF0}}, \text{V}_{\text{DDO}_\text{REF1}}. \\ & \text{NOTE: I}_{\text{DDO}_{X}} \text{ denotes, I}_{\text{DDO}_A} + \text{I}_{\text{DDO}_B} + \text{I}_{\text{DDO}_C} + \text{I}_{\text{DDO}_\text{REF0}} + \text{I}_{\text{DDO}_\text{REF1}}. \end{aligned}$

Table 5E. Power Supply DC Characteristics, $V_{DD} = V_{DDXTAL} = 2.5V \pm 5\%$, $V_{DDO} = 1.8V \pm 5\%$, $V_{A} = -40^{\circ}$ C to 85° C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		2.375	2.5	2.625	٧
V_{DDXTAL}	XTAL Power Supply Voltage		2.375	2.5	2.625	٧
V_{DDA}	Analog Supply Voltage		V _{DD} - 0.056	2.5	V _{DD}	V
V_{DDO_X}	Output Supply Voltage		1.71	1.8	1.89	٧
I _{DD}	Power Supply Current			135	147	mA
I _{DDXTAL}	XTAL Power Supply Current			39	43	mA
I _{DDA}	Analog Supply Current			24	28	mA
I _{DDO_X}	Output Supply Current	Outputs in High-Impedance		1	2	mA

 $\begin{aligned} & \text{NOTE: V}_{DDO_X} \text{ denotes, V}_{DDO_A}, \text{V}_{DDO_B}, \text{V}_{DDO_C}, \text{V}_{DDO_REF0}, \text{V}_{DDO_REF1}. \\ & \text{NOTE: I}_{DDO_X} \text{ denotes, I}_{DDO_A} + \text{I}_{DDO_B} + \text{I}_{DDO_C} + \text{I}_{DDO_REF0} + \text{I}_{DDO_REF1}. \end{aligned}$

Table 5F. LVCMOS/LVTTL DC Characteristics, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Innut Lligh Vol	togo	$V_{DD} = 3.3V \pm 5\%$	2		V _{DD} + 0.3	V
V _{IH}	Input High Vol	lage	$V_{DD} = 2.5V \pm 5\%$	1.7		V _{DD} + 0.3	V
V	Innuit Law Valt	200	$V_{DD} = 3.3V \pm 5\%$	-0.3		0.8	V
V_{IL}	Input Low Volt	age	V _{DD} = 2.5V ± 5%	-0.3		0.7	V
I _{IH}	Input	REF_SEL, MR, FSEL[3:0], SSC_EN, REFOUT_SEL,SADR	V _{DD} = V _{IN} = 3.465V or 2.625V			150	μA
	High Current	OE_A, OE_B, OE_C, OE_REF, PLL_SEL	V _{DD} = V _{IN} = 3.465V or 2.625V		5	μΑ	
I _{IL}	Input	REF_SEL, MR, FSEL[3:0], SSC_EN, REFOUT_SEL,SADR	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-5			μA
	Low Current	OE_A, OE_B, OE_C, OE_REF, PLL_SEL	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-150			μΑ
			$V_{DDO_X} = 3.3V \pm 5\%; I_{OH} = -12mA$	2.6			V
V _{OH}	Output High V	oltage	$V_{DDO_X} = 2.5V \pm 5\%; I_{OH} = -12mA$	1.8			V
			$V_{DDO_X} = 1.8V \pm 5\%$; $I_{OH} = -8mA$	1.3			V
V _{OL}	Output Low Vo	oltage;	$V_{DDO_X} = 3.3V \pm 5\% \text{ or } 2.5V \pm 5\%,$ $I_{OL} = 12\text{mA}$			0.5	V
			$V_{DDO_X} = 1.8V \pm 5\%, I_{OL} = 8mA$			0.4	V

 $\mathsf{NOTE} \colon \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{X}} \, \mathsf{denotes}, \, \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{A}}, \, \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{B}}, \, \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{C}}, \! \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{REF0}}, \! \mathsf{V}_{\mathsf{DDO}_{-}\mathsf{REF1}}.$

Table 5G. LVPECL DC Characteristics, $V_{DD} = V_{DDXTAL} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I _{IH}	Input High Current	PCLK, nPCLK	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
	Input Low	PCLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-5			μA
I _{IL}	Current	nPCLK	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA
V _{PP}	Peak-to-Peak	Voltage; NOTE 2		0.3		1.0	V
V _{CMR}	Common Moo NOTE 1, 2	de Input Voltage;		GND + 1.5		V _{DD}	V

NOTE 1: Common mode voltage is defined as $\rm V_{IH}.$ NOTE 2: $\rm V_{IL}$ should not be less than -0.3V and $\rm V_{IH}$ should not be greater than $\rm V_{DD.}$

Table 6. Input Frequency Characteristics, $V_{DD} = V_{DDXTAL} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f	Input	XTAL_IN, XTAL_OUT			25		MHz
¹IN	Frequency	PCLK, nPCLK	PLL Bypass		25	150	MHz

Table 7. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency			25		MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Capacitive Loading (C _L)			12	18	pF

AC Electrical Characteristics

Table 8A. AC Characteristics (QA, QBx, QCx), $V_{DD} = V_{DDXTAL} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, V_{DDO_A} , V_{DDO_B} , $V_{DDO_C} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$ or $1.8V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units	
f _{OUT}	Output Frequency			25		200	MHz	
tsk(b)	Bank Skew; NOTE 1, 2, 4					70	ps	
(Φ) _N	Single Side-Band Phase Noise; NOTE 4		Offset from Carrier: 500kHz		-140		dBc	
		V _{DDO} = 3.3V	FSEL[3:0] = 0000, 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1101, 1111		90	300	ps	
			FSEL[3:0] = 0001, 0111, 1000, 1011, 1100, 1110		260	530	ps	
	Cycle-to-Cycle Jitter; NOTE 1, 3, 4	er; $V_{DDO} = 2.5V$	FSEL[3:0] = 0000, 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1101, 1111		60	250	ps	
fjit(cc)			FSEL[3:0] = 0001, 0111, 1000, 1011, 1100, 1110		200	400	ps	
		V _{DDO} = 1.8V	FSEL[3:0] = 0000, 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1101, 1111		60	200	ps	
			FSEL[3:0] = 0001, 0111, 1000, 1011, 1100, 1110		175	350	ps	
fjit(per)	Period Jitter, Peak; NOTE 1, 3, 4	,	FSEL[3:0] = 0000, 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1101, 1111			±150	ps	
			FSEL[3:0] = 0001, 0111, 1000, 1011, 1100, 1110			±265	ps	
			FSEL[3:0] = 0000, 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1101, 1111			±125	ps	
		, ,	$V_{DDO} = 2.5V$	FSEL[3:0] = 0001, 0111, 1000, 1011, 1100, 1110			±200	ps
		V _{DDO} = 1.8V	FSEL[3:0] = 0000, 0010, 0011, 0100, 0101, 0110, 1001, 1010, 1101, 1111			±100	ps	
			FSEL[3:0] = 0001, 0111, 1000, 1011, 1100, 1110			±175	ps	
t _L	PLL Lock Time; NOTE 4					50	ms	
odc	Output Duty Cycle; NOTE 4			40		60	%	
	Slew Rate; NOTE 4		$V_{DDO} = 3.3V; 0.35V_{DDO} - 0.65V_{DDO}$	2.0	4.4	7.0	V/ns	
tsl(o)			$V_{DDO} = 2.5V; 0.35V_{DDO} - 0.65V_{DDO}$	1.0	2.9	4.0	V/ns	
			$V_{DDO} = 1.8V; 0.35V_{DDO} - 0.65V_{DDO}$	0.7	1.5	2.2	V/ns	

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: $V_{DDO} \le V_{DD.}$

NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 2: Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions.

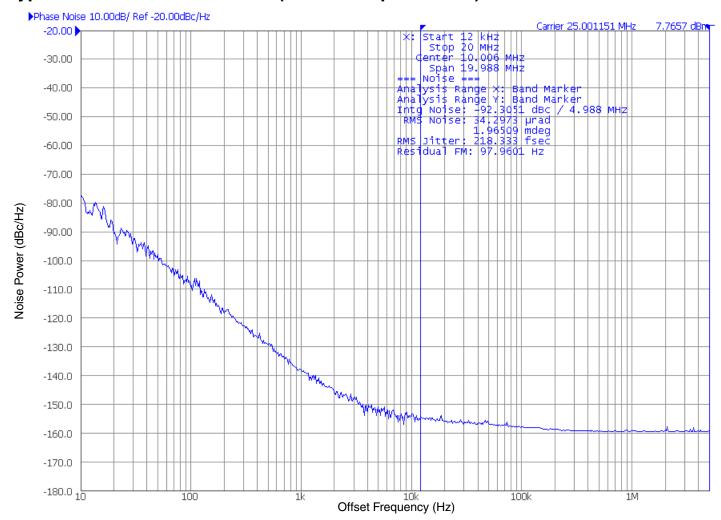
NOTE 3: Jitter performance using XTAL inputs.

NOTE 4: Characterized for frequencies in Table 3A.

Table 8B. AC Characteristics (QREF[0:1]), $V_{DD} = V_{DDXTAL} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, V_{DDO_REF0} , $V_{DDO_REF1} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$ or $1.8V \pm 5\%$, $V_{DDO_REF1} = 3.3V \pm 5\%$ or $1.8V \pm 5\%$ or

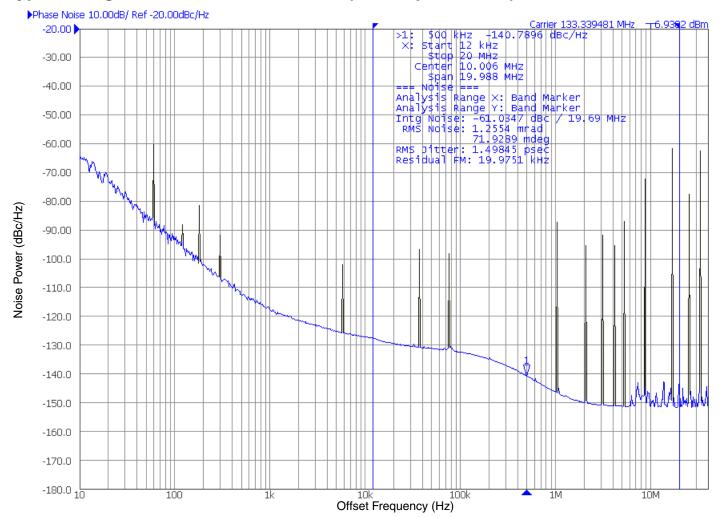
Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Output	QREF0		1.5625		3.125	MHz
fout	Frequency; NOTE 1	QREF1			25		MHz
fjit(θ)	RMS Phase Jitter (Random); NOTE 1, 2	QREF1	f _{OUT} = 25MHz, Integration Range: 12kHz to 5MHz		0.218	0.312	ps
odc	Output Duty Cycle;	NOTE 3		40		60	%
tsl(o)	Slew Rate	QREF1, f _{OUT} = 25MHz	$V_{DDO} = 3.3V; 0.35V_{DDO} - 0.65V_{DDO}$	2.0	5.4	8.0	V/ns
			$V_{DDO} = 2.5V; 0.35V_{DDO} - 0.65V_{DDO}$	2.0	3.5	5.0	V/ns
		001	$V_{DDO} = 1.8V; 0.35V_{DDO} - 0.65V_{DDO}$	1.0	1.7	3.0	V/ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.


NOTE: $V_{DDO} \le V_{DD.}$

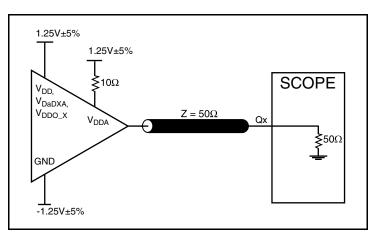
NOTE 1: Crystal oscillator selected as frequency source. NOTE 2: Refer to phase noise plot. Only applies to QREF1.

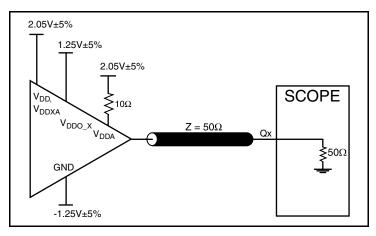
NOTE 3: Input duty cycle must be 50%.

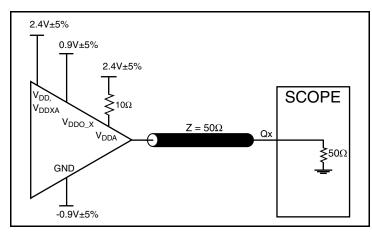


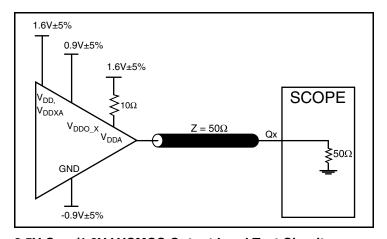
Typical Phase Noise at 25MHz (QREF1 output at 3.3V)

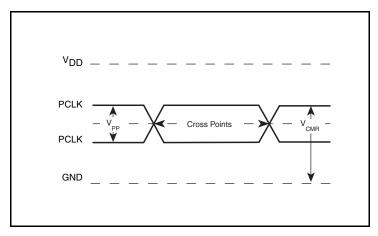
Typical Single-side Band Phase Noise (QB output at 3.3V)



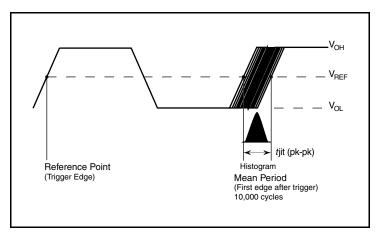

Parameter Measurement Information

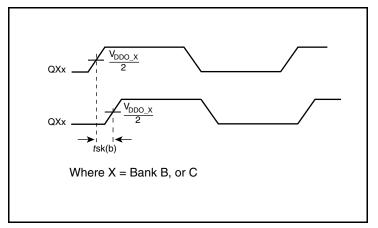

3.3V Core/3.3V LVCMOS Output Load Test Circuit

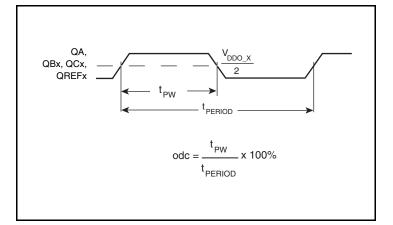

2.5V Core/2.5V LVCMOS Output Load Test Circuit

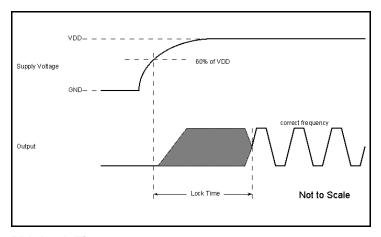

3.3V Core/2.5V LVCMOS Output Load Test Circuit

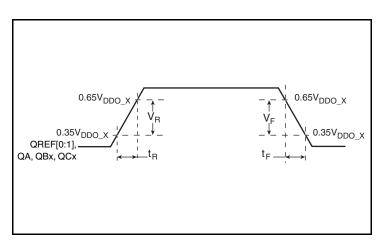
3.3V Core/1.8V LVCMOS Output Load Test Circuit


2.5V Core/1.8V LVCMOS Output Load Test Circuit


Differential Input Level


Parameter Measurement Information, continued


RMS Period Jitter, Peak-to-Peak


Bank Skew

Output Duty Cycle/Pulse Width/Period

PLL Lock Time

Slew Rate

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1 \mbox{k}\Omega$ resistor can be used.

PCLK/nPCLK Inputs

For applications not requiring the use of the differential input, both PCLK and nPCLK can be left floating. Though not required, but for additional protection, a $1 k \Omega$ resistor can be tied from PCLK to ground.

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground.

Outputs:

LVCMOS Outputs

All unused LVCMOS outputs can be left floating. There should be no trace attached.

Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/ns. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 1A shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This

can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and changing R2 to 50Ω . The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. *Figure 1B* shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and quaranteed by using a quartz crystal as the input.

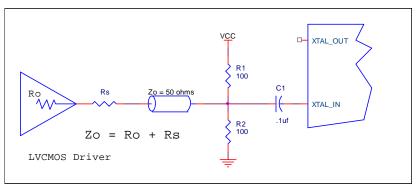


Figure 1A. General Diagram for LVCMOS Driver to XTAL Input Interface

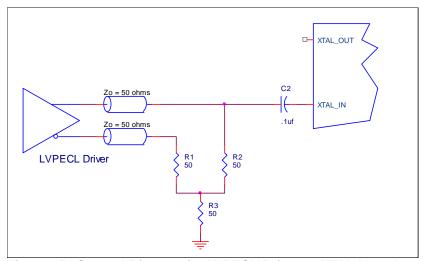


Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface

LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2B* show interface examples for the PCLK/nPCLK input driven by the most common driver types. The

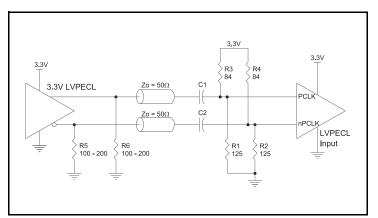


Figure 2A. PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver with AC Couple

input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

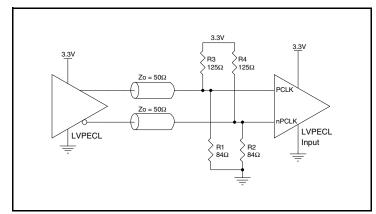


Figure 2B. PCLK/nPCLK Input
Driven by a 3.3V LVPECL Driver

2.5V LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3B* show interface examples for the PCLK/nPCLK input driven by the most common driver types. The

Figure 3A. PCLK/nPCLK Input Driven by a 3.3V LVPECL Driver with AC Couple

input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

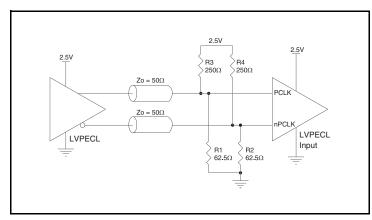


Figure 3B. PCLK/nPCLK Input
Driven by a 3.3V LVPECL Driver

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 4*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific

and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

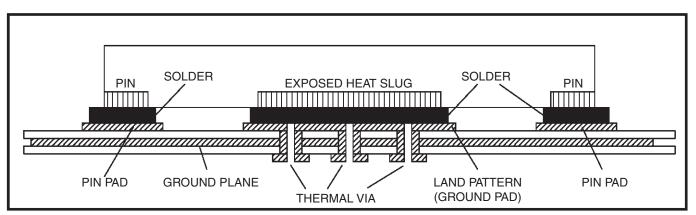


Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

Schematic Layout

Figure 5 shows an example 840NT4 application schematic. This schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set.

In this schematic, the device is operated at $V_{DD} = V_{DDA} = 2.5V$ and V_{DDO} A, V_{DDO} B, V_{DDO} C and V_{DDO} REFx = 1.8V.

A 12pF parallel resonant 25MHz crystal is used with the recommended load capacitors C1 = C2 = 3.3pF for frequency accuracy. Depending on the parasitic capacity on the crystal terminals of the printed circuit board layout, these values might require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will require adjusting C1 and C2. For this device, the crystal load capacitors are required for proper operation.

Crystal layout is very important to minimize capacitive coupling between the crystal pads and leads and other metal in the circuit board. Capacitive coupling to other conductors has two adverse effects; it reduces the oscillator frequency leaving less tuning margin and noise coupling from power planes and logic transitions on signal traces can pull the phase of the crystal resonance, inducing jitter. Routing I²C under the crystal is a very common layout error, based on the assumption that it is a low frequency signal and will not affect the crystal oscillation. In fact, I²C transition times are short enough to capacitively couple into the crystal if they are routed close enough to the crystal traces.

In layout, all capacitive coupling to the crystal from any signal trace is to be minimized, that is to the XTAL_IN and XTAL_OUT pins, traces to the crystal pads, the crystal pads and the tuning capacitors. Using a crystal on the top layer as an example, void all signal and power layers under the crystal connections between the top layer and the ground plane used by the 840NT4. Then calculate the parasitic capacity to the ground and determine if it is large enough to preclude tuning the oscillator. If the coupling is excessive, particularly if the first

layer under the crystal is a ground plane, a layout option is to void the ground plane and all deeper layers until the next ground plane is reached. The ground connection of the tuning capacitors should first be made between the capacitors on the top layer, then a single ground via is dropped to connect the tuning cap ground to the ground plane as close to the 840NT4 as possible as shown in the schematic.

This device package has an ePAD that is connected to ground internally. The ePAD is to be connected to V_{EE} /GND through vias in order to improve heat dissipation.

As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 840NT4 provides separate power supply pins to isolate any high switching noise from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1uF capacitor in each power pin filter should be placed on the device side. The other components can be on the opposite side of the PCB.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.

For additional layout recommendations and guidelines, contact clocks@idt.com.

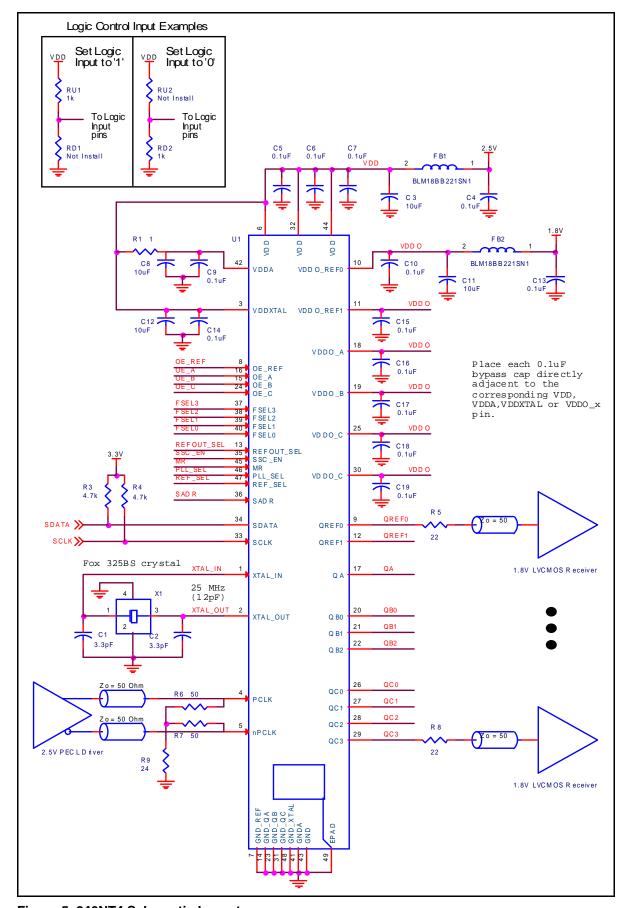


Figure 5. 840NT4 Schematic Layout

Power Considerations

This section provides information on power dissipation and junction temperature for the 840NT4. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 840NT4 is the sum of the core power plus the analog power plus the power dissipation due to loading. The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

• Power (Static)_{MAX} =
$$[V_{DD_MAX} * (I_{DD_MAX} + I_{DD_XTAL} + I_{DDA} + I_{DDO_X})]$$

= $[3.465V * (149mA + 44mA + 32mA + 3mA)]$
= $790.02mW$

Dynamic Power Dissipation (max)

```
• Power (F_{OUT\_MAX}) = [C_{PD} * (8 * F_{MAX\_Qa,b,c} + F_{MAX\_QREF1} + F_{MAX\_QREF0}) * (V_{DDO})^2]

= [15pF * (8 * 200MHz + 25MHz + 3.125MHz) * (3.465V)^2]

= 293.2mW
```

Total Power

- = (Static Power + Dynamic Power Dissipation)
- = (790.02 mW + 293.2 mW)
- = 1083.22mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 29° C/W per Table 9 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

```
85^{\circ}\text{C} + 1.083\text{W} * 29^{\circ}\text{C/W} = 116.4^{\circ}\text{C}. This is below the limit of 125^{\circ}\text{C}.
```

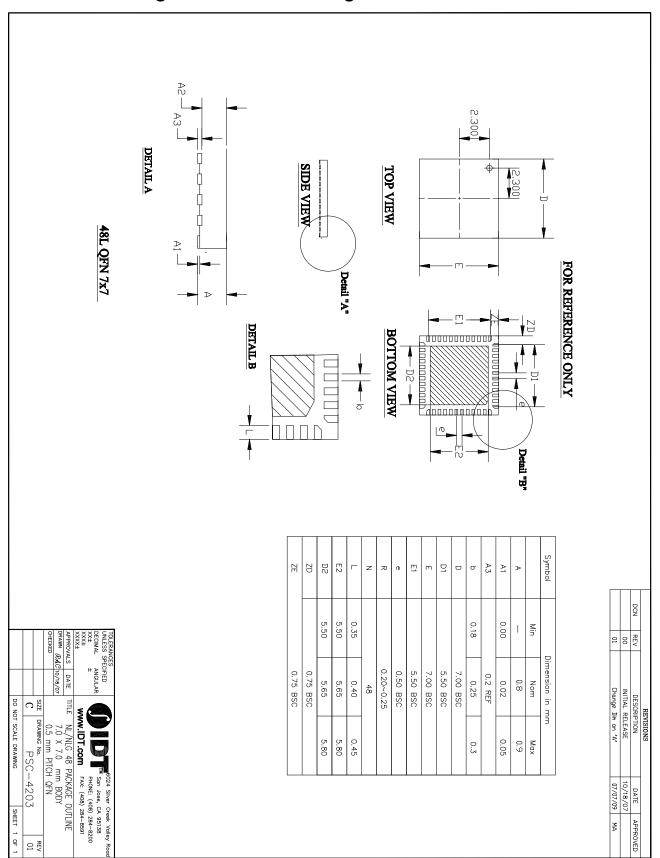
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 9. Thermal Resistance θ_{JA} for a 48 Lead VFQFN Package, Forced Convection

θ_{JA} by Velocity				
Meters per Second	0	1	2	
Multi-Layer PCB, JEDEC Standard Test Boards	29.0°C/W	22.88°C/W	20.62°C/W	

Reliability Information

Table 10. θ_{JA} vs. Air Flow Table for a 48 Lead VFQFN


θ _{JA} vs. Air Flow					
Meters per Second	0	1	2		
Multi-Layer PCB, JEDEC Standard Test Boards	29.0°C/W	22.88°C/W	20.62°C/W		

Transistor Count

840NT4 transistor count 27,463

48 Lead VFQFN Package Outline and Package Dimensions

Ordering Information

Table 11. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature	
840NT4NLGI	IDT840NT4NLGI	48 Lead VFQFN, Lead-Free	Tray	-40°C to 85°C	
840NT4NLGI8	IDT840NT4NLGI	48 Lead VFQFN, Lead-Free	Tape & Reel	-40°C to 85°C	

NOTE: Parts that are ordered with an "G" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Drivers & Distribution category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C 6ES7212-1AF40-0XB0 EC4P-221-MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ AD9511BCPZ AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI