General Description

The 841S101 is a PLL-based clock synthesizer specifically designed for PCI_Express ${ }^{\top \mathrm{M}}$ Clock applications. This device generates a 100 MHz differential HCSL clock from a input reference of 25 MHz . The input reference may be derived from an external source or by the addition of a 25 MHz crystal to the on-chip crystal oscillator. An external reference is applied to the XTAL_IN pin with the XTAL_OUT pin left floating. The device offers spread spectrum clock output for reduced EMI applications. An $I^{2} \mathrm{C}$ bus interface is used to enable or disable spread spectrum operation as well as select either a down spread value of -0.35% or $-.5 \%$. The 841 S 101 is available in a lead-free 16-Lead TSSOP package.

Features

- One 0.7V current mode differential HCSL output pair
- Crystal oscillator interface: 25 MHz
- Output frequency: 100 MHz
- RMS phase jitter @ 100MHz (12kHz - 20MHz): 1.23ps (typical)
- Cycle-to-cycle jitter: 20ps (maximum)
- $I^{2} \mathrm{C}$ support with readback capabilities up to 400 kHz
- Spread Spectrum for electromagnetic interference (EMI) reduction
- 3.3 V operating supply mode
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient operating temperature
- Available in a lead-free (RoHS 6) package
- PCI Express Gen 1, 2 and 3 jitter compliant

Block Diagram

Pin Assignment

841 S101
16-Lead TSSOP
$4.4 \mathrm{~mm} \times 5.0 \mathrm{~mm} \times 0.925 \mathrm{~mm}$ package body G Package
Top View

Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Type		Description
1, 6, 8, 10	$\mathrm{V}_{\text {SS }}$	Power		Power supply ground.
2, 5, 11, 16	$V_{\text {DD }}$	Power		Power supply pins.
3, 4	SRCT0, SRCC0	Output		Differential output pair. HCSL interface levels.
7	IREF	Input		An external fixed precision resistor (475Ω) from this pin to ground provides a reference current used for differential current-mode SRCCx, SRCTx clock outputs.
9	$\mathrm{V}_{\text {DDA }}$	Power		Analog supply for PLL.
12, 13	$\begin{gathered} \text { XTAL_IN, } \\ \text { XTAL_OUT } \end{gathered}$	Input		Crystal oscillator interface. XTAL_IN is the input. XTAL_OUT is the output.
14	SCLK	Input	Pullup	$I^{2} \mathrm{C}$ compatible SCLK. This pin has an internal pullup resistor. Open drain. LVCMOS/LVTTL interface levels.
15	SDATA	I/O	Pullup	$I^{2} \mathrm{C}$ compatible SDATA. This pin has an internal pullup resistor. LVCMOS/LVTTL interface levels.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			2		
$\mathrm{R}_{\text {PULLUP }}$	Input Pullup Resistor			$5 F$		

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal $\mathrm{I}^{2} \mathrm{C}$ serial interface is provided. Through the Serial Data Interface, various device functions, such as clock output buffers, can be individually enabled or disabled. The registers associated with the

Data Protocol

The clock driver serial protocol accepts bye write, byte read, block write and block read operations from the controller. For block write/read operation, the bytes must be accessed is sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individually
serial interface initialize to their default setting upon power-up, and therefore, use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required.
indexed bytes. The offset of the indexed byte is encoded in the command code, as described in Table 3A.

The block write and block read protocol is outlined in Table 3B, while Table 3C outlines the corresponding byte write and byte read protocol. The slave receiver address is 11010010 (D2h).

Table 3A.Command Code Definition

Bit	Description
7	$0=$ Block read or block write operation, $1=$ Byte read or byte write operation.
$6: 5$	Chip select address, set to "00" to access device.
$4: 0$	Byte offset for byte read or byte write operation. For block read or block write operations, these bits must be "00000".

Table 3B. Block Read and Block Write Protocol

Bit	Description = Block Write	Bit	Description = Block Read
1	Start	1	Start
$2: 8$	Slave address -7 bits	$2: 8$	Slave address -7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
$11: 18$	Command Code -8 bits	$11: 18$	Command Code -8 bits
19	Acknowledge from slave	20	Acknowledge from slave
$20: 27$	Byte Count -8 bits	$21: 27$	Repeat start
28	Acknowledge from slave	28	Read = 1
$29: 36$	Data byte $1-8$ bits	29	Acknowledge from slave
37	Acknowledge from slave	$30: 37$	Byte Count from slave -8 bits
$38: 45$	Data byte $2-8$ bits	$39: 46$	Acknowledge
46	Acknowledge from slave	47	Acknowledge
	Data Byte/Slave Acknowledges	$48: 55$	Data Byte 2 from slave -8 bits
	Data Byte $N-8$ bits	56	Acknowledge
	Acknowledge from slave		Data Bytes from Slave/Acknowledge
	Stop		Data Byte N from slave -8 bits
			Not Acknowledge

Table 3C. Byte Read and Byte Write Protocol

Bit	Description = Byte Write	Bit	Description = Byte Read
1	Start	1	Start
$2: 8$	Slave address -7 bits	$2: 8$	Slave address -7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
$11: 18$	Command Code -8 bits	$11: 18$	Command Code -8 bits
19	Acknowledge from slave	19	Acknowledge from slave
$20: 27$	Data Byte -8 bits	20	Repeat start
28	Acknowledge from slave	$21: 27$	Slave address -7 bits
29	Stop	28	Read
		$30: 37$	Acknowledge from slave
		38	Not Acknowledge from slave -8 bits
		Stop	

Control Registers

Table 3D. Byte 0: Control Register 0

Bit	@Pup	Name	Description
7	0	Reserved	Reserved
6	1	Reserved	Reserved
5	1	Reserved	Reserved
4	1	Reserved	Reserved
3	1	Reserved	Reserved
2	1	SRC[T/C]0	SRC[T/C]0 Output Enable $0=$ Disable (Hi-Z) $1=$ Enable
1	0	Reserved	Reserved
0	0	Reserved	Reserved

NOTE: Pup denotes Power-up.

Table 3E. Byte 1: Control Register 1

Bit	@Pup	Name	Description
7	0	Reserved	Reserved
6	0	Reserved	Reserved
5	0	Reserved	Reserved
4	0	Reserved	Reserved
3	0	Reserved	Reserved
2	0	Reserved	Reserved
1	0	Reserved	Reserved
0	0	Reserved	Reserved

Table 3F. Byte 2: Control Register 2

Bit	@ Pup	Name	Description
7	1	SRCT/C	Spread Spectrum Selection $0=-0.35 \%, 1=-0.5 \%$
6	1	Reserved	Reserved
5	1	Reserved	Reserved
4	0	Reserved	Reserved
3	1	Reserved	Reserved
2	0	SRC	SRC Spread Spectrum Enable $0=$ Spread Off, = Spread On
1	1	Reserved	Reserved
0	1	Reserved	Reserved

Table 3G. Byte 3:Control Register 3

Bit	@Pup	Name	Description
7	1	Reserved	Reserved
6	0	Reserved	Reserved
5	1	Reserved	Reserved
4	0	Reserved	Reserved
3	1	Reserved	Reserved
2	1	Reserved	Reserved
1	1	Reserved	Reserved
0	1	Reserved	Reserved

Table 3H. Byte 4: Control Register 4

Bit	@Pup	Name	Description
7	0	Reserved	Reserved
6	0	Reserved	Reserved
5	0	Reserved	Reserved
4	0	Reserved	Reserved
3	0	Reserved	Reserved
2	0	Reserved	Reserved
1	0	Reserved	Reserved
0	1	Reserved	Reserved

Table 3I. Byte 5: Control Register 5

Bit	@Pup	Name	Description
7	0	Reserved	Reserved
6	0	Reserved	Reserved
5	0	Reserved	Reserved
4	0	Reserved	Reserved
3	0	Reserved	Reserved
2	0	Reserved	Reserved
1	0	Reserved	Reserved
0	0	Reserved	Reserved

Table 3J. Byte 6: Control Register 6

Bit	@Pup	Name	Description
7	0	TEST_SEL	REF/N or Hi-Z Select $0=\mathrm{Hi}-Z, 1=$ REF/N
6	0	TEST_MODE	TEST Clock Mode Entry Control $0=$ Normal Operation, $1=$ REF/N or Hi-Z Mode
5	0	Reserved	Reserved
4	1	Reserved	Reserved
3	0	Reserved	Reserved
2	0	Reserved	Reserved
1	1	Reserved	Reserved
0	1	Reserved	Reserved

NOTE: Pup denotes Power-up.

Table 3K. Byte 7: Control Register 7

Bit	@Pup	Name	Description
7	0		Revision Code Bit 3
6	0		Revision Code Bit 2
5	0		Revision Code Bit 1
4	0		Revision Code Bit 0
3	0		Vendor ID Bit 3
2	0		Vendor ID Bit 2
1	0		Vendor ID Bit 1
0	1		Vendor ID Bit 0

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.5 V
Inputs, V_{I}	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Outputs, V_{O}	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Package Thermal Impedance, θ_{JA}	$86.9^{\circ} \mathrm{C} / \mathrm{W}(0 \mathrm{mps})$
Storage Temperature, $\mathrm{T}_{\mathrm{STG}}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$V_{D D}$	Core Supply Voltage		3.135	3.3	3.465	V
$V_{D D A}$	Analog Supply Voltage		$\mathrm{V}_{\mathrm{DD}}-0.22$	3.3	$\mathrm{~V}_{\mathrm{DD}}$	V
I_{DD}	Power Supply Current				80	mA
$\mathrm{I}_{\mathrm{DDA}}$	Analog Supply Current				22	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	SDATA, SCLK		2.2		$\mathrm{~V}_{\mathrm{DD}}+0.3$
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	SDATA, SCLK		-0.3		0.8
I_{IH}	Input High Current	SDATA, SCLK	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IN}}=3.465 \mathrm{~V}$		V	
I_{IL}	Input Low Current	SDATA, SCLK	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150		10

Table 5. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency			25		
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

NOTE: Characterized using an 18pF parallel resonant crystal.

AC Electrical Characteristics

Table 6A. PCI Express Jitter Specifications, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	PCle Industry Specification	Units
$\begin{aligned} & \mathrm{t}_{\mathrm{j}} \\ & \text { (PCle Gen 1) } \end{aligned}$	Phase Jitter Peak-to-Peak; NOTE 1, 4	$f=100 \mathrm{MHz}, 25 \mathrm{MHz}$ Crystal Input Evaluation Band: OHz - Nyquist (clock frequency/2)		13.3	19.3	86	ps
$t_{\text {REFCLK_HF_RMS }}$ (PCle Gen 2)	Phase Jitter RMS; NOTE 2, 4	$f=100 \mathrm{MHz}, 25 \mathrm{MHz}$ Crystal Input High Band: 1.5 MHz - Nyquist (clock frequency/2)		1.1	1.53	3.1	ps
$t_{\text {REFCLK_LF_RMS }}$ (PCle Gen 2)	Phase Jitter RMS; NOTE 2, 4	$\begin{gathered} f=100 \mathrm{MHz}, 25 \mathrm{MHz} \text { Crystal Input } \\ \text { Low Band: } 10 \mathrm{kHz}-1.5 \mathrm{MHz} \end{gathered}$		0.19	0.32	3.0	ps
trefCLK_RMS (PCle Gen 3)	Phase Jitter RMS; NOTE 3, 4	$f=100 \mathrm{MHz}, 25 \mathrm{MHz}$ Crystal Input Evaluation Band: OHz - Nyquist (clock frequency/2)		0.18	0.30	0.8	ps

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions. For additional information, refer to the PCI Express Application Note section in the datasheet.
NOTE 1: Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86 ps peak-to-peak for a sample size of 10^{6} clock periods.
NOTE 2: RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1 ps RMS for $t_{\text {REFCLK_HF_RMS }}$ (High Band) and 3.0ps RMS for trefCLK_LF_RMS (Low Band).
NOTE 3: RMS jitter after applying system transfer function for the common clock architecture. This specification is based on the PCI Express Base Specification Revision 0.7, October 2009 and is subject to change pending the final release version of the specification.
NOTE 4: This parameter is guaranteed by characterization. Not tested in production.

Table 6B. AC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {MAX }}$	Output Frequency			100		MHz
$\mathrm{f}_{\text {REF }}$	Reference frequency			25		MHz
tiji(Ø)	Phase Jitter, RMS (Random); NOTE 1	25MHz crystal, $f=100 \mathrm{MHz}$, Integration Range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		1.23		ps
tit(cc)	Cycle-to-Cycle Jitter; NOTE 2	PLL Mode			20	ps
t_{L}	PLL Lock Time				55	ms
F_{M}	SSC Modulation Frequency; NOTE 4	25MHz Crystal	30	32	33.33	kHz
$\mathrm{SSC}_{\text {RED }}$	Spectral Reduction; NOTE 4		-7	-10		dB
V_{RB}	Ring-back Voltage Margin; NOTE 4, 5		-100		100	mV
$\mathrm{V}_{\text {MAX }}$	Absolute Max. Output Voltage; NOTE 6, 7				1150	mV
$\mathrm{V}_{\text {MIN }}$	Absolute Min. Output Voltage; NOTE 6, 8		-300			mV
$\mathrm{V}_{\text {CROSS }}$	Absolute Crossing Voltage; NOTE 6, 9, 10		250		550	mV
$\Delta \mathrm{V}_{\text {CROSS }}$	Total Variation of $\mathrm{V}_{\text {CROSs }}$ over all edges; NOTE 6, 9, 11				140	mV
	Rise/Fall Edge Rate; NOTE 6, 12	Measured between 150 mV to +150 mV	0.6		4.0	V/ns
odc	Output Duty Cycle		48		52	\%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.
NOTE: Characterized using a 25 MHz quartz crystal.
NOTE 1: Refer to phase jitter plot.
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 3: Spread Spectrum clocking enabled.
NOTE 4: Measurement taken from differential waveform.
NOTE 5: $T_{\text {STABLE }}$ is the time the differential clock must maintain a minimum $\pm 150 \mathrm{mV}$ differential voltage after rising/falling edges before it is allowed to drop back into the $\mathrm{V}_{\mathrm{RB}} \pm 100 \mathrm{mV}$ differential range.
NOTE 6: Measurement taken from single-ended waveform.
NOTE 7: Defined as the maximum instantaneous voltage including overshoot. See Parameter Measurement Information Section.
NOTE 8: Defined as the minimum instantaneous voltage including undershoot. See Parameter Measurement Information Section.
NOTE 9: Measured at crossing point where the instantaneous voltage value of the rising edge of SRCT equals the falling edge of SRCC.
NOTE 10: Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
NOTE 11: Defined as the total variation of all crossing voltages of rising SRCT and falling SRCC, This is the maximum allowed variance in Vcross for any particular system.
NOTE 12: Measured from -150 mV to +150 mV on the differential waveform (SRCT minus SRCC). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.

Typical Phase Noise at 100 MHz

Offset Frequency (Hz)

Parameter Measurement Information

3.3V HCSL Output Load AC Test Circuit

Cycle-to-Cycle Jitter

Single-ended Measurement Points for Absolute Cross
Point and Swing Point and Swing

3.3V HCSL Output Load AC Test Circuit

RMS Phase Jitter

Single-ended Measurement Points for Delta Cross Point

Parameter Measurement Information, continued

Differential Measurement Points for Ringback

Differential Measurement Points for Duty Cycle/Period

Differential Measurement Points for Rise/Fall Edge Rate

Applications Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 841S101 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and $\mathrm{V}_{\mathrm{DDA}}$ should be individually connected to the power supply plane through vias, and $0.01 \mu \mathrm{~F}$ bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V_{DD} pin and also shows that $\mathrm{V}_{\mathrm{DDA}}$ requires that an additional 10Ω resistor along with a $10 \mu \mathrm{~F}$ bypass capacitor be connected to the $V_{\text {DDA }}$ pin.

Figure 1. Power Supply Filtering

Recommendations for Unused Input Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pull-ups; additional resistance is not required but can be added for additional protection. A $1 \mathrm{k} \Omega$ resistor can be used.

Crystal Input Interface

The 841S101 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in Figure 2 below were determined using a $25 \mathrm{MHz}, 18 \mathrm{pF}$ parallel resonant crystal and
were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

Figure 2. Crystal Input Interface

Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in Figure 3A. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2 V and the input edge rate can be as slow as 10 ns . This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition,
matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and making R2 50 . By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface

Recommended Termination

Figure $4 A$ is the recommended termination for applications which require the receiver and driver to be on a separate PCB. All traces should be 50Ω impedance.

Figure 4A. Recommended Termination

Figure $4 B$ is the recommended termination for applications which require a point to point connection and contain the driver and receiver
on the same PCB. All traces should all be 50Ω impedance.

Figure 4B. Recommended Termination

Renesns

PCI Express Application Note

PCI Express jitter analysis methodology models the system response to reference clock jitter. The block diagram below shows the most frequently used Common Clock Architecture in which a copy of the reference clock is provided to both ends of the PCl Express Link.

In the jitter analysis, the transmit (Tx) and receive (Rx) serdes PLLs are modeled as well as the phase interpolator in the receiver. These transfer functions are called $\mathrm{H} 1, \mathrm{H} 2$, and H 3 respectively. The overall system transfer function at the receiver is:
$\mathrm{Ht}(\mathrm{s})=\mathrm{H} 3(\mathrm{~s}) \times[\mathrm{H} 1(\mathrm{~s})-\mathrm{H} 2(\mathrm{~s})]$
The jitter spectrum seen by the receiver is the result of applying this system transfer function to the clock spectrum $\mathrm{X}(\mathrm{s})$ and is:
$\mathrm{Y}(\mathrm{s})=\mathrm{X}(\mathrm{s}) \times \mathrm{H} 3(\mathrm{~s}) \times[\mathrm{H} 1(\mathrm{~s})-\mathrm{H} 2(\mathrm{~s})]$
In order to generate time domain jitter numbers, an inverse Fourier Transform is performed on $\mathrm{X}(\mathrm{s})^{*} \mathrm{H} 3(\mathrm{~s})^{*}[\mathrm{H} 1(\mathrm{~s})-\mathrm{H} 2(\mathrm{~s})]$.

PCI Express Common Clock Architecture

For PCI Express Gen 1, one transfer function is defined and the evaluation is performed over the entire spectrum: DC to Nyquist (e.g for a 100 MHz reference clock: $0 \mathrm{~Hz}-50 \mathrm{MHz}$) and the jitter result is reported in peak-peak.

PCle Gen 1 Magnitude of Transfer Function
For PCI Express Gen 2, two transfer functions are defined with 2 evaluation ranges and the final jitter number is reported in rms. The two evaluation ranges for PCI Express Gen 2 are $10 \mathrm{kHz}-1.5 \mathrm{MHz}$ (Low Band) and 1.5 MHz - Nyquist (High Band). The plots show the individual transfer functions as well as the overall transfer function Ht .

PCle Gen 2A Magnitude of Transfer Function

PCle Gen 2B Magnitude of Transfer Function

For PCI Express Gen 3, one transfer function is defined and the evaluation is performed over the entire spectrum. The transfer function parameters are different from Gen 1 and the jitter result is reported in RMS.

PCle Gen 3 Magnitude of Transfer Function
For a more thorough overview of PCI Express jitter analysis methodology, please refer to IDT Application Note PCI Express Reference Clock Requirements.

Schematic Layout

Figure 5 shows an example of 841S101 application schematic. In this example, the device is operated at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$. The 18 pF parallel resonant 25 MHz crystal is used. The $\mathrm{C} 1=18 \mathrm{pF}$ and $\mathrm{C} 2=33 \mathrm{pF}$ are recommended for frequency accuracy. For different board layouts,
the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. Two examples of HCSL termination are shown in this schematic. The decoupling capacitors should be located as close as possible to the power pin.

Figure 5. 841S101 Application Schematic.

Spread Spectrum

Spread-spectrum clocking is a frequency modulation technique for EMI reduction. When spread-spectrum is enabled, a 32 kHz triangle waveform is used with 0.5% down-spread from the nominal 100 MHz clock frequency. An example of a triangle frequency modulation profile is shown in Figure 6A below.
The 841S101 triangle modulation frequency deviation is 0.5% down-spread from the nominal clock frequency. An example of the
amount of down spread relative to the nominal clock frequency can be seen in the frequency domain, as shown in Figure 6B. The ratio of this difference to the fundamental frequency is typically 0.5%. The resulting spectral reduction will be greater than 7 dB , as shown in Figure 2B. It is important to note the 841 S 1017 dB minimum spectral reduction is the component-specific EMI reduction, and will not necessarily be the same as the system EMI reduction.

Figure 6A. Triangle Frequency Modulation

Figure 6B. 100MHz Clock Output In Frequency Domain
(A) Spread-Spectrum OFF
(B) Spread-Spectrum ON

Power Considerations

This section provides information on power dissipation and junction temperature for the 841S101.
Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 841S101 is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+5 \%=3.465 \mathrm{~V}$, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.
The maximum current at $85^{\circ} \mathrm{C}$ is as follows:
$I_{D D _M A X}=73 \mathrm{~mA}$
$I_{\text {DDA_MAX }}=19 \mathrm{~mA}$

- Power $(\text { core })_{\text {MAX }}=V_{\text {DD_MAX }}{ }^{*}\left(I_{\text {DD_MAX }}+I_{\text {DDA_MAX }}\right)=3.465 \mathrm{~V} *(73 \mathrm{~mA}+19 \mathrm{~mA})=\mathbf{3 1 8 . 7 8 m W}$
- Power (outputs) MAX $=44.5 \mathrm{~mW} /$ Loaded Output pair

Total Power $_{-\mathrm{MAX}}=318.78 \mathrm{~mW}+44.5 \mathrm{~mW}=363.28 \mathrm{~mW}$

2. Junction Temperature.

Junction temperature, Tj , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is $125^{\circ} \mathrm{C}$. Limiting the internal transistor junction temperature, Tj, to $125^{\circ} \mathrm{C}$ ensures that the bond wire and bond pad temperature remains below $125^{\circ} \mathrm{C}$.

The equation for Tj_{j} is as follows: $\mathrm{Tj}=\theta_{\mathrm{JA}}$ * Pd_total $+\mathrm{T}_{\mathrm{A}}$
$\mathrm{Tj}=$ Junction Temperature
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is $86.9^{\circ} \mathrm{C} / \mathrm{W}$ per Table 7 below.

Therefore, Tj for an ambient temperature of $85^{\circ} \mathrm{C}$ with all outputs switching is:

$$
85^{\circ} \mathrm{C}+0.363 \mathrm{~W} * 86.9^{\circ} \mathrm{C} / \mathrm{W}=116.5^{\circ} \mathrm{C} \text {. This is below the limit of } 125^{\circ} \mathrm{C} .
$$

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 16 Lead TSSOP, Forced Convection

$\theta_{\text {JA }}$ vs. Air Flow			
Meters per Second	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2 . 5}$
Multi-Layer PCB, JEDEC Standard Test Boards	$86.9^{\circ} \mathrm{C} / \mathrm{W}$	$82.5^{\circ} \mathrm{C} / \mathrm{W}$	$80.4^{\circ} \mathrm{C} / \mathrm{W}$

3. Calculations and Equations.

The purpose of this section is to calculate power dissipation on the IC per HCSL output pair.
HCSL output driver circuit and termination are shown in Figure 7.

Figure 7. HCSL Driver Circuit and Termination

HCSL is a current steering output which sources a maximum of 17 mA of current per output. To calculate worst case on-chip power dissipation, use the following equations which assume a 50Ω load to ground.

The highest power dissipation occurs when $V_{\text {DD-MAX }}$.

Power $=\left(\mathrm{V}_{\text {DD_MAX }}-\mathrm{V}_{\text {OUT }}\right){ }^{*} \mathrm{I}_{\text {OUT }}$,
since $V_{\text {OUT }}$ - $l_{\text {OUT }}{ }^{*} R_{\text {L }}$

$$
\begin{aligned}
& =\left(\mathrm{V}_{\text {DD_MAX }}-\mathrm{I}_{\text {OUT }}{ }^{*} \mathrm{R}_{\mathrm{L}}\right) * \mathrm{I}_{\text {OUT }} \\
& =(3.465 \mathrm{~V}-17 \mathrm{~mA} * 50 \Omega) * 17 \mathrm{~mA}
\end{aligned}
$$

Total Power Dissipation per output pair $=44.5 \mathrm{~mW}$

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 16 Lead TSSOP

θ_{JA} vs. Air Flow			
Meters per Second	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2 . 5}$
Multi-Layer PCB, JEDEC Standard Test Boards	$86.9^{\circ} \mathrm{C} / \mathrm{W}$	$82.5^{\circ} \mathrm{C} / \mathrm{W}$	$80.4^{\circ} \mathrm{C} / \mathrm{W}$

Transistor Count

The transistor count for 841S101 is: 11,775

Package Outline and Package Dimensions

Package Outline - G Suffix for 16 Lead TSSOP

Table 9. Package Dimensions

All Dimensions in Millimeters				
Symbol	Minimum	Maximum		
N	16			
A		1.20		
A1	0.05	0.15		
A2	0.80	1.05		
b	0.19	0.30		
c	0.09	0.20		
D	4.90	5.10		
E	6.40 Basic			
E1	4.30	4.50		
e	0.65			
Basic				
L	0.45	0.75		
aaa	0°	8°		
aen				0.10

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
841S101EGILF	1S101EIL	"Lead-Free" 16 Lead TSSOP	Tube	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
841S101EGILFT	1S101EIL	"Lead-Free" 16 Lead TSSOP	Tape \& Reel	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Revision History Sheet

Rev	Table	Page	Description of Change	Date
A	10	21	Ordering Information Table - corrected marking.	$6 / 24 / 10$
B	10	22	Ordering Information Table - deleted Tape \& Reel count and table note. Updated datasheet header/footer. Deleted "ICS" prefix, "l" suffix from part number	$5 / 25 / 16$

Renesas

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Synthesizer/Jitter Cleaner category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :
MPC9230EIR2 PL902166USY 954204CGLF 9LPRS485DGLF PL902167USY MAXREFDES161\# 8V19N490ABDGI LMK04821NKDT CDCE937QPWRQ1 PI6CX201ALE 9LPRS355BGLF CDCEL913IPWRQ1 ABMJB-903-101UMG-T5 ABMJB-903-150UMG-T5 ABMJB-903-151UMG-T5 AD9542BCPZ AD9578BCPZ 9FG104EFILF 9FG104EFLF 308RILF 840001BGI-25LF 843004AGLF 843801AGI-24LF 844004BGI-01LF 844S42BKILF 8A34044C-000NLG 954226AGLF 9FG108EFLF 9LPR363EGLF 9LPRS355BKLF 9LPRS365BGLF GS4915-INE3 9DB306BLLF ABMJB-902-155USY-T5 ABMJB-902-156USY-T5 ABMJB-902-Q76USY-T5 ABMJB-902-Q82USY-T5 ABMJB-902-104USY-T5 ABMJB-902-153USY-T5 ABMJB-902-154USY-T5 ABMJB-902-Q42USY-T5 ABMJB-902-Q57USY-T5 ABMJB-902-Q74USY-T5 ABMJB-902-Q78USY-T5 LTC6951IUHF-1\#PBF 650GI-44LF 8430252CGI-45LF 8432DYI-101LF 84329BYLF 8432DY-101LF

