## General Description

The 843081I-01 is an Ethernet Clock Multiplier. The 843081I-01 accepts a crystal reference of $19.6 \mathrm{MHz}-28 \mathrm{MHz}$. The $843081 \mathrm{I}-$ 01 has excellent 1 ps or lower phase jitter performance, over the $1.875 \mathrm{MHz}-20 \mathrm{MHz}$ integration range. The $843081 \mathrm{I}-01$ is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

## Features

- One differential LVPECL output
- One crystal oscillator interface: $19.6 \mathrm{MHz}-28 \mathrm{MHz}$
- Output frequency range: $490 \mathrm{MHz}-700 \mathrm{MHz}$
- VCO range: $490 \mathrm{MHz}-700 \mathrm{MHz}$
- RMS phase jitter @ 625MHz using a 25 MHz reference (1.875MHz-20MHz): 0.32ps (typical)
- 3.3 V or 2.5 V operating supply
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient operating temperature
- Available in lead-free RoHS compliant package
- For functional replacement part use 843071


## Frequency Example Function Table

| Input | M/N (Multiplier) | Output Frequencies (MHz) |
| :---: | :---: | :---: |
| XTAL (MHz) |  |  |
| 20 | 25 | 500 |
| 25 | 25 | 625 |
| 28 | 25 | 700 |

## Block Diagram



## Pin Assignment

$\left.\begin{array}{rll}\text { Vcca } & \square 1 & 8 \\ \square\end{array}\right)$ Vcc

8430811-01
8-Lead TSSOP
$4.40 \mathrm{~mm} \times 3.0 \mathrm{~mm} \times 0.925 \mathrm{~mm}$ package body G Package Top View

## Table 1. Pin Descriptions

| Number | Name | Type |  | Description |
| :---: | :---: | :---: | :--- | :--- |
| 1 | $\mathrm{~V}_{\text {CCA }}$ | Power |  | Analog supply pin. |
| 2, | XTAL_OUT, | Input |  | Crystal oscillator interface. XTAL_IN is the input, <br> XTAL_OUT is the output. |
| 3 | XTAL_IN | $\mathrm{V}_{\text {EE }}$ | Power |  |
| 4 | OE | Input | Pullup | Negative supply pin. <br> Output enable pin. When HIGH, Q output is enabled. <br> When LOW, forces Q to HiZ state. LVCMOS/LVTTL interface levels. <br> 6 |
| 6,7 | $\mathrm{nQ}, \mathrm{Q}$ | Output |  | Differential clock outputs. LVPECL interface levels. |
| 8 | $\mathrm{~V}_{\mathrm{CC}}$ | Power |  | Core supply pin. |

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

## Table 2. Pin Characteristics

| Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\mathbb{I N}}$ | Input Capacitance |  |  | 4 |  | pF |
| $\mathrm{R}_{\text {PULLUP }}$ | Input Pullup Resistor |  |  | 51 |  | $\mathrm{k} \Omega$ |

## Absolute Maximum Ratings

| Supply Voltage, $\mathrm{V}_{\mathrm{CC}}$ | 4.6 V |
| :--- | :--- |
| Inputs, $\mathrm{V}_{1}$ | -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ |
| Outputs, I |  |
| $\quad$ Continuous Current | 50 mA |
| Surge Current | 100 mA |
| Package Thermal Impedance, $\theta_{\mathrm{JA}}$ | $101.7^{\circ} \mathrm{C} / \mathrm{W}(0 \mathrm{mps})$ |
| Storage Temperature, $\mathrm{T}_{\text {STG }}$ | $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cca}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Core Supply Voltage |  | 3.135 | 3.3 | 3.465 | V |
| $\mathrm{~V}_{\mathrm{CCA}}$ | Analog Supply Voltage |  | 3.135 | 3.3 | 3.465 | V |
| $I_{C C}$ | Power Supply Current |  |  | 72 |  | mA |
| $I_{C C A}$ | Analog Supply Current |  |  | 12 |  | mA |
| $I_{\mathrm{EE}}$ | Power Supply Current |  |  | 78 |  | mA |

Table 3B. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cca}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ тo $85^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Core Supply Voltage |  | 2.375 | 2.5 | 2.625 | V |
| $\mathrm{~V}_{\mathrm{CCA}}$ | Analog Supply Voltage |  | 2.375 | 2.5 | 2.625 | V |
| $\mathrm{I}_{\mathrm{CC}}$ | Power Supply Current |  |  | 60 |  | mA |
| $\mathrm{I}_{\mathrm{CCA}}$ | Analog Supply Current |  |  | 12 |  | mA |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current |  |  | 73 |  | mA |

Table 3C. LVCMOS/LVTTL DC Characteristics, $\mathrm{V}_{\text {cC }}=\mathrm{V}_{\text {CCA }}=3.3 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | 2 |  | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |
|  |  | $\mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ | 1.7 |  | $\mathrm{~V}_{\mathrm{CC}}+0.3$ | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Input Low Voltage | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | -0.3 |  | 0.8 | V |
|  |  | $\mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ | -0.3 |  | 0.7 | V |
| $\mathrm{I}_{\mathrm{HH}}$ | Input High Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=3.465 \mathrm{~V}$ or 2.625 V |  |  | 5 | $\mu \mathrm{~A}$ |
| $\mathrm{I}_{\mathrm{L}}$ | Input Low Current | $\mathrm{V}_{\mathrm{CC}}=3.465 \mathrm{~V}$ or $2.625 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ | -150 |  |  | $\mu \mathrm{~A}$ |

Table 3D. LVPECL DC Characteristics, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {CCA }}=3.3 \mathrm{~V} \pm 5 \%$ or $2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage; NOTE 1 |  | $\mathrm{V}_{\mathrm{CC}}-1.4$ |  | $\mathrm{~V}_{\mathrm{CC}}-0.9$ | V |
| $\mathrm{~V}_{\mathrm{OL}}$ | Output Low Voltage; NOTE 1 |  | $\mathrm{V}_{\mathrm{CC}}-2.0$ |  | $\mathrm{~V}_{\mathrm{CC}}-1.7$ | V |
| $\mathrm{~V}_{\mathrm{SWING}}$ | Peak-to-Peak Output Voltage Swing |  | 0.6 |  | 1.0 | V |

NOTE 1: Outputs terminated with $50 \Omega$ to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$.

## Table 4. Crystal Characteristics

| Parameter | Test Conditions | Minimum | Typical | Maximum | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mode of Oscillation |  | Fundamental |  |  |  |
| Frequency |  | 19.6 |  | 28 | MHz |
| Equivalent Series Resistance (ESR) |  |  |  | 50 | $\Omega$ |
| Shunt Capacitance |  |  |  | 7 | pF |
| Drive Level |  |  |  | 1 | mW |

Table 5A. AC Characteristics, $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\text {ccA }}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {out }}$ | Output Frequency |  | 490 |  | 700 | MHz |
| tjit(Ø) | RMS Phase Jitter (Random); <br> NOTE 1 | $625 \mathrm{MHz} \mathrm{@} \mathrm{Integration} \mathrm{Range:}$ <br> $1.875 \mathrm{MHz}-20 \mathrm{MHz}$ |  | 0.32 |  | ps |
| $\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ | Output Rise/Fall Time | $20 \%$ to $80 \%$ | 125 |  | 600 | ps |
| odc | Output Duty Cycle | $\mathrm{XTAL}=25 \mathrm{MHz}$ | 45 |  | 55 | $\%$ |

NOTE 1: Please refer to the Phase Noise Plot following this section.

Table 5B. AC Characteristics, $\mathrm{V}_{\text {cc }}=\mathrm{V}_{\text {cca }}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

| Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {out }}$ | Output Frequency |  | 490 |  | 700 | MHz |
| tjit( $($ ) | RMS Phase Jitter (Random); <br>  <br> NOTE 1 | $625 \mathrm{MHz} \mathrm{@} \mathrm{Integration} \mathrm{Range:}$ <br> $1.875 \mathrm{MHz}-20 \mathrm{MHz}$ |  | 0.39 |  | ps |
| $\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$ | Output Rise/Fall Time | $20 \%$ to $80 \%$ | 125 |  | 650 | ps |
| odc | Output Duty Cycle | $\mathrm{XTAL}=25 \mathrm{MHz}$ | 45 |  | 55 | $\%$ |

NOTE 1: Please refer to the Phase Noise Plot following this section.


## Parameter Measurement Information



## Application Information

## Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The 843081l-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {CCA }}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a $10 \Omega$ resistor along with a $10 \mu \mathrm{~F}$ and a $.01 \mu \mathrm{~F}$ bypass capacitor should be connected to each $\mathrm{V}_{\text {CCA }}$ pin. The $10 \Omega$ resistor can also be replaced by a ferrite bead.


Figure 1. Power Supply Filtering

## Crystal Input Interface

The 843081I-01 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in Figure 2 below were determined using an 18 pF parallel reso-
nant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.


Figure 2. Crystal Input Interface

## Termination for 3.3V LVPECL Output

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed


Figure 3A. LVPECL Output Termination
to drive $50 \Omega$ transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures $3 A$ and $3 B$ show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.


Figure 3B. LVPECL Output Termination

## Termination for 2.5V LVPECL Output

Figure $4 A$ and Figure $4 B$ show examples of termination for 2.5 V LVPECL driver. These terminations are equivalent to terminating $50 \Omega$ to $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$. For $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$, the $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$ is very close to


Figure 4A. 2.5V LVPECL Driver Termination Example

Figure 4C. 2.5V LVPECL Termination Example

ground level. The R3 in Figure 4B can be eliminated and the termination is shown in Figure 4C.


Figure 4B. 2.5V LVPECL Driver Termination Example

## Power Considerations

This section provides information on power dissipation and junction temperature for the 843081I-01. Equations and example calculations are also provided.

## 1. Power Dissipation.

The total power dissipation for the 843081I-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}+5 \%=3.465 \mathrm{~V}$, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core) $)_{\text {max }}=\mathrm{V}_{\text {CC_max }}{ }^{*} \mathrm{I}_{\text {EE_TYP }}=3.465 \mathrm{~V} * 78 \mathrm{~mA}=\mathbf{2 7 0 . 2 7 m W}$
- Power (outputs) MAX $=30 \mathrm{~mW} /$ Loaded Output pair

Total Power ${ }_{\text {max }}(3.465 \mathrm{~V}$, with all outputs switching $)=270.27 \mathrm{~mW}+30 \mathrm{~mW}=300.27 \mathrm{~mW}$

## 2. Junction Temperature.

Junction temperature, Tj , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is $125^{\circ} \mathrm{C}$.

The equation for Tj is as follows: $\mathrm{Tj}=\theta_{\mathrm{JA}}$ * Pd_total $+\mathrm{T}_{\mathrm{A}}$
$\mathrm{Tj}=$ Junction Temperature
$\theta J A=$ Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
$T_{A}=$ Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance $\theta \mathrm{Ja}$ must be used. Assuming a moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is $90.5^{\circ} \mathrm{C} / \mathrm{W}$ per Table 6 below.

Therefore, Tj for an ambient temperature of $85^{\circ} \mathrm{C}$ with all outputs switching is:
$85^{\circ} \mathrm{C}+0.300 \mathrm{~W}$ * $90.5^{\circ} \mathrm{C} / \mathrm{W}=112^{\circ} \mathrm{C}$. This is below the limit of $125^{\circ} \mathrm{C}$.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance Oja for 8 -pin TSSOP, Forced Convection

## $\theta_{\mathrm{JA}}$ by Velocity (Meters per Second)

Multi-Layer PCB, JEDEC Standard Test Boards
$101.7^{\circ} \mathrm{C} / \mathrm{W}$
1
$90.5^{\circ} \mathrm{C} / \mathrm{W}$
2.5
$89.8^{\circ} \mathrm{C} / \mathrm{W}$

## 3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.
LVPECL output driver circuit and termination are shown in Figure 5.


Figure 5. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a $50 \Omega$ load, and a termination
voltage of $\mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}$.

- For logic high, $\mathrm{V}_{\text {OUt }}=\mathrm{V}_{\text {OH_MAX }}=\mathrm{V}_{\text {CC_MAX }}-\mathbf{0 . 9 V}$

$$
\left(\mathrm{V}_{\text {CCO_MAX }}-\mathrm{V}_{\text {OH_MAX }}\right)=0.9 \mathrm{~V}
$$

- For logic low, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OL_MAX }}=\mathrm{V}_{\text {cc_max }}-\mathbf{1 . 7 V}$
$\left(\mathrm{V}_{\text {CCO_MAX }}-\mathrm{V}_{\text {OL_MAX }}\right)=1.7 \mathrm{~V}$
$\mathrm{Pd} \_\mathrm{H}$ is power dissipation when the output drives high.
$\mathrm{Pd} \_\mathrm{L}$ is the power dissipation when the output drives low.
Pd_H $=\left[\left(\mathrm{V}_{\text {OH_MAX }}-\left(\mathrm{V}_{\text {CC_MAX }}-2 \mathrm{~V}\right)\right) / \mathrm{R}_{\mathrm{L}}\right]^{*}\left(\mathrm{~V}_{\text {CC_MAX }}-\mathrm{V}_{\text {OH_MAX }}\right)=\left[\left(2 \mathrm{~V}-\left(\mathrm{V}_{\text {CC_MAX }}-\mathrm{V}_{\text {OH_MAX }}\right)\right) / \mathrm{R}_{\mathrm{L}}\right]^{*}\left(\mathrm{~V}_{\text {CC_MAX }}-\mathrm{V}_{\text {OH_MAX }}\right)=$ $[(2 \mathrm{~V}-0.9 \mathrm{~V}) / 50 \Omega]$ * $0.9 \mathrm{~V}=19.8 \mathrm{~mW}$

$[(2 \mathrm{~V}-1.7 \mathrm{~V}) / 50 \Omega]$ * $1.7 \mathrm{~V}=10.2 \mathrm{~mW}$

Total Power Dissipation per output pair $=$ Pd_H + Pd_L $=30 \mathrm{~mW}$

## Reliability Information

Table 7. $\theta_{\text {jA }}$ vs. Air Flow Table for 8 Lead TSSOP

| OJA by Velocity (Meters per Second) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Multi-Layer PCB, JEDEC Standard Test Boards | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2 . 5}$ |  |
|  | $101.7^{\circ} \mathrm{C} / \mathrm{W}$ | $90.5^{\circ} \mathrm{C} / \mathrm{W}$ | $89.8^{\circ} \mathrm{C} / \mathrm{W}$ |  |

## Transistor Count

The transistor count for 843081I-01 is: 1697

## Package Outline - G Suffix for 8 Lead TSSOP



Table 8. Package Dimensions

| SYMBOL | Millimeters |  |
| :---: | :---: | :---: |
|  | Minimum | Maximum |
| N | 8 |  |
| A | -- | 1.20 |
| A1 | 0.05 | 0.15 |
| A2 | 0.80 | 1.05 |
| b | 0.19 | 0.30 |
| c | 0.09 | 0.20 |
| D | 2.90 | 3.10 |
| E | 4.30 | 6.40 BASIC |
| E1 | 0.45 | 4.50 |
| e | $0^{\circ}$ | 0.75 |
| L | -- | $8^{\circ}$ |
| $\alpha$ | 0.65 BASIC |  |
| aaa | 0.10 |  |

Table 9. Ordering Information

| Part/Order Number | Marking | Package | Shipping Packaging | Temperature |
| :---: | :---: | :---: | :---: | :---: |
| 843081AGI-01LF | AI01L | 8 lead "Lead-Free" TSSOP | tube | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |
| 843081AGI-01LFT | AI01L | 8 lead "Lead-Free" TSSOP | tape \& reel | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ |

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

| REVISION HISTORY SHEET |  |  |  |  |
| :---: | :---: | :---: | :--- | :---: |
| Rev | Table | Page | Description of Change | Date |
| B | T5B | 1 | Features Section - corrected RMS Phase Jitter value. <br> 3.3V AC Characteristics Table - changed RMS Phase Jitter from 0.26ps typical to <br> T.32ps typical. <br> 2.5V AC Characteristics Table - changed RMS Phase Jitter from 0.27ps typical to <br> 0.39ps typical. <br> Updated Typical Phase Noise Plots. <br> Ordering Information Table - added lead-free marking. | $1 / 23 / 06$ |
| C | T9 | 14 | Updated datasheet's header/footer with IDT from ICS. <br> Removed ICS prefix from Part/Order Number column. <br> Added Contact Page. |  |
| C | T9 | 14 | Ordering Information - removed leaded devices. <br> Updated data sheet format. | $7 / 25 / 10$ |
| C | 1 | T9 |  |  |

Renesns

## IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

## Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

## Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

## Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30156GGG2 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1

