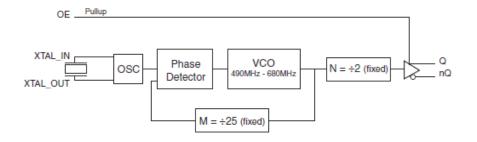
PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES MAY 6, 2017

DATA SHEET

GENERAL DESCRIPTION

The 844031I-01 is an Ethernet Clock Generator. The 844031I-01 uses an 18pF parallel resonant crystal over the range of 19.6MHz - 27.2MHz. For Ethernet applications, a 25MHz crystal is used to generate 312.5MHz. The 844031I-01 has excellent <1ps phase jitter performance, over the 1.875MHz - 20MHz integration range. The 844031I-01 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.


FEATURES

- · One differential LVDS output
- Crystal oscillator interface, 18pF parallel resonant crystal (19.6MHz - 27.2MHz)
- Output frequency range: 245MHz 340MHz
- VCO range: 490MHz 680MHz
- RMS phase jitter @ 312.5MHz, using a 25MHz crystal (1.875MHz - 20MHz): 0.53ps (typical), @ 3.3V
- 3.3V or 2.5V operating supply
- -40°C to 85°C ambient operating temperature
- · Available in lead-free (RoHS 6) package
- For functional replacement use 8T49N242


COMMON CONFIGURATION TABLE

	Output Frequency			
Crystal Frequency (MHz) M N			Multiplication Value M/N	(MHz)
25	25	2	12.5	312.5

BLOCK DIAGRAM

PIN ASSIGNMENT

844031I-01

8-Lead TSSOP 4.40mm x 3.0mm x 0.925mm package body G Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	ре	Description
1	V _{DDA}	Power		Analog supply pin.
2	GND	Power		Power supply ground.
3, 4	XTAL_OUT, XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	OE	Input	Pullup	Output enable pin. When HIGH, Q/nQ output is active. When LOW, the Q/nQ output is in a high impedance state. LVC-MOS/LVTTL interface levels.
6, 7	nQ, Q	Output		Differential clock outputs. LVDS interface levels.
8	V _{DD}	Power		Core supply pin.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C	Input Capacitance			4		pF
R	Input Pullup Resistor			51		kΩ

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

Inputs, V_{DD} -0.5 V to V_{DD} + 0.5 V

Outputs, I_o (LVDS)

Continuous Current 10mA
Surge Current 15mA

Package Thermal Impedance, θ_ω 129.5°C/W (0 mps)

Storage Temperature, T_{STG} -65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		V _{DD} - 0.10	3.3	V _{DD}	V
 DD	Power Supply Current				75	mA
DDA	Analog Supply Current				10	mA

Table 3B. Power Supply DC Characteristics, $V_{_{DD}} = 2.5V \pm 5\%$, Ta = -40°C to 85° C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		2.375	2.5	2.625	V
V _{DDA}	Analog Supply Voltage		V _{DD} - 0.10	2.5	V _{DD}	V
I _{DD}	Power Supply Current				70	mA
DDA	Analog Supply Current				10	mA

Table 3C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = -40°C to 85° C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
\ <u>/</u>	Input High Voltage		$V_{_{\rm DD}} = 3.3 V$	2		V _{DD} + 0.3	V
V _{IH}	Imput riigh voltage		$V_{_{DD}} = 2.5V$	1.7		V _{DD} + 0.3	V
V	Input Low Voltage		$V_{_{\rm DD}} = 3.3 V$	-0.3		0.8	V
V _{IL}	Imput Low voitage		$V_{_{\rm DD}} = 2.5 V$	-0.3		0.7	V
I _{IH}	Input High Current	OE	$V_{DD} = V_{IN} = 3.465 \text{V} \text{ or } 2.625 \text{V}$			5	μA
I	Input Low Current	OE	$V_{_{DD}} = 3.465V \text{ or } 2.625V, V_{_{IN}} = 0V$	-150			μΑ

Table 3D. LVDS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{od}	Differential Output Voltage		275		425	mV
$\Delta V_{_{OD}}$	V _{op} Magnitude Change				50	mV
Vos	Offset Voltage		1.15	1.33	1.45	V
ΔV_{os}	V _{os} Magnitude Change				50	mV

NOTE: Please refer to Parameter Measurement Information for output information.

Table 3E. LVDS DC Characteristics, $V_{_{DD}} = 2.5V \pm 5\%$, Ta = -40°C to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{od}	Differential Output Voltage		215		430	mV
$\Delta V_{_{\mathrm{OD}}}$	V _{op} Magnitude Change				50	mV
Vos	Offset Voltage		1.05	1.26	1.45	V
$\Delta V_{_{ m OS}}$	V _{os} Magnitude Change				50	mV

NOTE: Please refer to Parameter Measurement Information for output information.

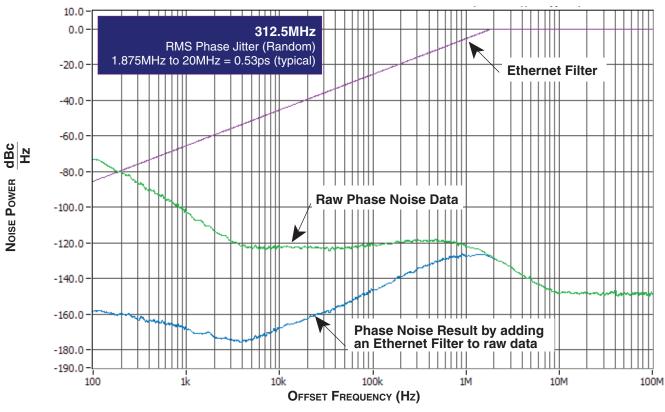
TABLE 4. CRYSTAL CHARACTERISTICS

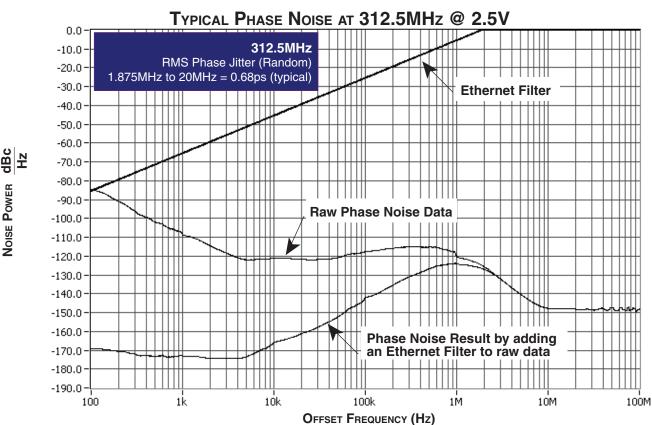
Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		F	undamental		
Frequency		19.6		27.2	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

NOTE: It is not recommended to overdrive the crystal input with an external clock.

Table 5A. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, TA = -40°C to 85°C

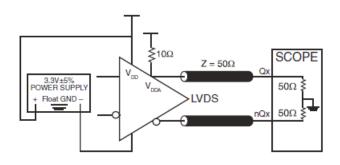
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency		245		340	MHz
tjit(Ø)	RMS Phase Jitter (Random); NOTE 1	312.5MHz @ Integration Range: 1.875MHz - 20MHz		0.53		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	200		400	ps
odc	Output Duty Cycle		48		52	%

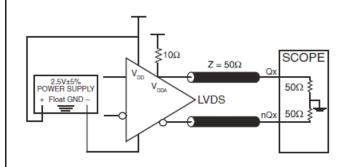

NOTE 1: Please refer to the Phase Noise Plots following this section.

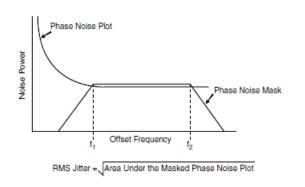

Table 5B. AC Characteristics, $V_{_{DD}} = 2.5V \pm 5\%$, Ta = -40°C to 85°C

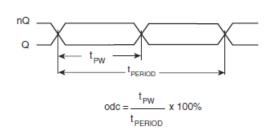
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{out}	Output Frequency		245		340	MHz
tjit(Ø)	RMS Phase Jitter (Random); NOTE 1	312.5MHz @ Integration Range: 1.875MHz - 20MHz		0.68		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	200		400	ps
odc	Output Duty Cycle		48		52	%

NOTE 1: Please refer to the Phase Noise Plots following this section.

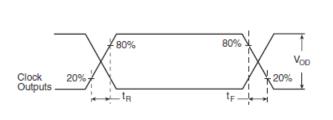


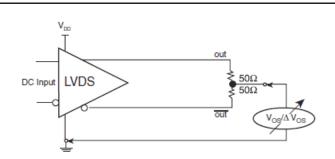



PARAMETER MEASUREMENT INFORMATION

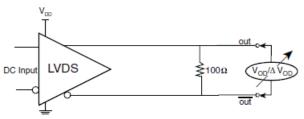


LVDS 3.3V OUTPUT LOAD AC TEST CIRCUIT


LVDS 2.5V OUTPUT LOAD AC TEST CIRCUIT



RMS PHASE JITTER


OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

OUTPUT RISE/FALL TIME

OFFSET VOLTAGE SETUP

APPLICATION INFORMATION

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 844031I-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{_{\rm DD}}$ and $V_{_{\rm DDA}}$ should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V $_{_{\rm DD}}$ pin and also shows that V $_{_{\rm DDA}}$ requires that an additional10 Ω resistor along with a 10µF bypass capacitor be connected to the V $_{_{\rm DDA}}$ pin.

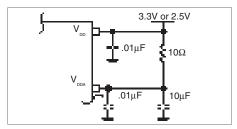


FIGURE 1. POWER SUPPLY FILTERING

CRYSTAL INPUT INTERFACE

The 844031I-01 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel

resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

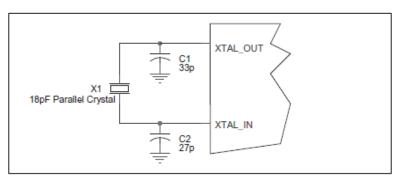
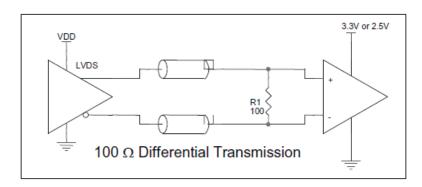


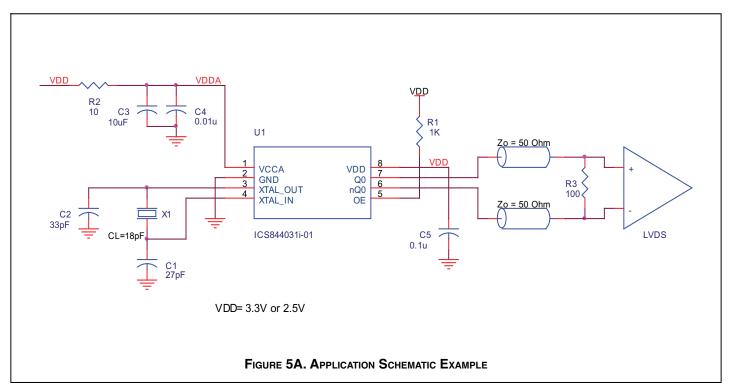
FIGURE 2. CRYSTAL INPUT INTERFACE

3.3V, 2.5V LVDS DRIVER TERMINATION

A general LVDS interface is shown in Figure 4 In a 100Ω differential transmission line environment, LVDS drivers require a matched load termination of 100Ω across near

the receiver input. For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.




FIGURE 4. TYPICAL LVDS DRIVER TERMINATION

APPLICATION SCHEMATIC

Figure 5A provides a schematic example of 844031I-01. In this example, an 18 pF parallel resonant crystal is used. The C1 = 22pF and C2 = 22pF are recommended for frequency. The C1 and C2 values may be slightly adjusted for optimizing

frequency accuracy. At least one decoupling capacitor near the power pin is required. Suggested value range is from $0.01\mu F$ to $0.1\mu F$. Other filter type can be added depending on the system power supply noise type.

PC BOARD LAYOUT EXAMPLE

Figure 5B shows an example of 844031I-01 P.C. board layout. The crystal X1 footprint shown in this example allows installation of either surface mount HC49S or through-hole HC49 package. The footprints of other components in this example are listed in the *Table*

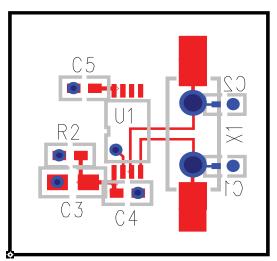


FIGURE 5B. 844031I-01 PC BOARD LAYOUT EXAMPLE

6. There should be at least one decoupling capacitor per power pin. The decoupling capacitors should be located as close as possible to the power pins. The layout assumes that the board has clean analog power ground plane.

TABLE 6. FOOTPRINT TABLE

Reference	Size
C1, C2	0402
C3	0805
C4, C5	0603
R2	0603

NOTE: Table 6, lists component sizes shown in this layout example.

POWER CONSIDERATIONS

This section provides information on power dissipation and junction temperature for the 844031I-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 844031I-01 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{pp} = 3.3V + 5\% = 3.465V$, which gives worst case results.

• Power (core)_{MAX} = $V_{DD,MAX}$ * ($I_{DD,MAX}$ + $I_{DDA,MAX}$) = 3.465V * (75mA + 10mA) = **294.5mW**

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: 85°C + 0.294W * 129.5°C/W = 123.1°C. This is below the limit of 125°C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 7. Thermal Resistance θ_{JA} for 8-Lead TSSOP, Forced Convection

$\theta_{\text{\tiny JA}}$ by Velocity (Meters per Second)

 0
 1
 2.5

 Multi-Layer PCB, JEDEC Standard Test Boards
 129.5°C/W
 125.5°C/W
 123.5°C/W

RELIABILITY INFORMATION

Table 8. $\theta_{_{JA}} vs.$ Air Flow Table for 8 Lead TSSOP

$\theta_{\text{\tiny JA}}$ by Velocity (Meters per Second)

 Multi-Layer PCB, JEDEC Standard Test Boards
 0
 1
 2.5

 Multi-Layer PCB, JEDEC Standard Test Boards
 129.5°C/W
 125.5°C/W
 123.5°C/W

TRANSISTOR COUNT

The transistor count for 844031I-01 is: 2519

PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP

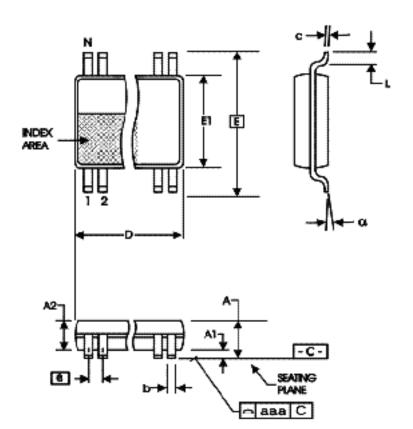


TABLE 9. PACKAGE DIMENSIONS

CVMDOL	Millimeters		
SYMBOL	Minimum	Maximum	
N	8		
А		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
С	0.09	0.20	
D	2.90	3.10	
E	6.40 BASIC		
E1	4.30	4.50	
е	0.65 BASIC		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

TABLE 10. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
844031BGI-01LF	BI01L	8 lead "Lead-Free" TSSOP	tube	-40°C to 85°C
844031BGI-01LFT	BI01L	8 lead "Lead-Free" TSSOP	tape & reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

REVISION HISTORY SHEET					
Rev	Table	Page	Description of Change	Date	
Α	T5	4	AC Characteristics Table - Added "or 2.5V±5%" to table title condition.	9/5/08	
А	T4 T10	1 4 8 12	Deleted HiPerClockS references. Crystal Characteristics Table - added note. Deleted application note, LVCMOS to XTAL Interface. Deleted quantity from tape and reel.	9/23/12	
А	T10	12	Ordering Information - removed leaded devices. Updated data sheet format.	11/9/15	
А			Product Discontinuation Notice - Last time buy expires May 6, 2017. PDN CQ-16-01	6/2/16	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE
ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7
MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI
5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2
MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD95160BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2