General Description

The 8523I-03 is a low skew, high performance 1-to-4 Dif-ferential-to-LVHSTL fanout buffer. The 8523I-03 has two selectable clock inputs. The input pairs can accept most standard differential input levels. The clock enable is internally synchronized toeliminate runt pulses on the outputs during asynchronousassertion/deassertion of the clock enable pin.
Guaranteed output and part-to-part skew characteristics make the 85231-03 ideal for those applications demanding well defined performance and repeatability.

Block Diagram

Features

- 4 differential LVHSTL compatible outputs
- Selectable differential CLK0, nCLK0 and CLK1, nCLK1 clock inputs
- Clock input pairs can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- Maximum output frequency: 650MHz
- Translates any single-ended input signal to LVHSTL levels with resistor bias on nCLK input
- Output skew: 50ps (maximum)
- Part-to-part skew: 400ps (maximum)
- Propagation delay: 1.2 ns (typical)
- $\mathrm{V}_{\mathrm{OH}}=1 \mathrm{~V}$ (maximum)
- 3.3 V core, 1.8 V output operating supply
- Lead-Free package available
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient operating temperature

Pin Assignment

GND	1
CLK_EN	

8523I-03
20-Lead TSSOP
$6.5 \mathrm{~mm} \times 4.4 \mathrm{~mm} \times 0.92 \mathrm{~mm}$ body package
G Package
Top View

Table 1. Pin Descriptions

Number	Name	Type		Description
1	GND	Power		Power supply ground.
2	CLK_EN	Input	Pullup	Synchronizing clock enable. When HIGH, clock outputs follow clock input. When LOW, Q outputs are forced low, nQ outputs are forced high. LVCMOS / LVTTL interface levels.
3	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects differential CLK1, nCLK1 inputs. When LOW, selects CLK0, nCLK0 inputs. LVCMOS / LVTTL interface levels.
4	CLK0	Input	Pulldown	Non-inverting differential clock input.
5	nCLK0	Input	Pullup	Inverting differential clock input.
6	CLK1	Input	Pulldown	Non-inverting differential clock input.
7	nCLK1	Input	Pullup	Inverting differential clock input.
8,9	nc	Unused		No connect.
10	VDD	Power		Core supply pin.
11,12	nQ3, Q3	Output		Differential output pair. LVHSTL interface levels.
13,18	VDDO	Power		Output supply pins.
14,15	nQ2, Q2	Output		Differential output pair. LVHSTL interface levels.
16,17	nQ1, Q1	Output		Differential output pair. LVHSTL interface levels.
19,20	nQ0, Q0	Output		Differential output pair. LVHSTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance				4	pF
$\mathrm{R}_{\text {PULLUP }}$	Input Pullup Resistor			51		$\mathrm{~K} \Omega$
$\mathrm{R}_{\text {PULLDown }}$	Input Pulldown Resistor			51		$\mathrm{~K} \Omega$

Table 3A. Control Input Function Table

Inputs		Outputs		
CLK_EN	CLK_SEL	Selected Source	Q0:Q3	nQ0:nQ3
0	0	CLK0, nCLK0	Disabled; LOW	Disabled; HIGH
0	1	CLK1, nCLK1	Disabled; LOW	Disabled; HIGH
1	0	CLK0, nCLK0	Enabled	Enabled
1	1	CLK1, nCLK1	Enabled	Enabled

After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in Figure 1.
In the active mode, the state of the outputs are a function of the CLK0, nCLK0 and CLK1, nCLK1 inputs as described in Table 3B.

Figure 1. CLK_EN Timing Diagram

Table 3B. Clock Input Function Table

Inputs		Outputs		Input to Output Mode	Polarity
CLK0 or CLK1	nCLK0 or nCLK1	Q0:Q3	nQ0:nQ3		
0	0	LOW	HIGH	Differential to Differential	Non Inverting
1	1	HIGH	LOW	Differential to Differential	Non Inverting
0	Biased; NOTE 1	LOW	HIGH	Single Ended to Differential	Non Inverting
1	Biased; NOTE 1	HIGH	LOW	Single Ended to Differential	Non Inverting
Biased; NOTE 1	0	HIGH	LOW	Single Ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single Ended to Differential	Inverting

NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels".

Absolute Maximum Ratings

Supply Voltage, V_{cc}	4.6 V
Inputs, V_{I}	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Outputs, I_{O} \quad Continuous Current 50 mA \quad Surge Current	100 mA
Package Thermal Impedance, θ_{JA}	$73.2^{\circ} \mathrm{C} / \mathrm{W}(0$ Ifpm $)$
${\text { Storage Temperature, } \mathrm{T}_{\mathrm{STG}}}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{Ddo}}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ то $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
$\mathrm{~V}_{\mathrm{DDO}}$	Output Power Supply Voltage		1.6	1.8	2.0	V
I_{DD}	Power Supply Current				55	mA

Table 4B. LVCMOS / LVTTL DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{Ddo}}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ то $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	CLK_EN, CLK_SEL		2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	CLK_EN, CLK_SEL		-0.3		0.8	V
I_{H}	Input High Current	CLK_EN	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			5	$\mu \mathrm{A}$
		CLK_SEL	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			150	$\mu \mathrm{A}$
I_{1}	Input Low Current	CLK_EN	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$
		CLK_SEL	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$

Table 4C. Differential DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{Ddo}}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
${ }_{1 H}$	Input High Current	nCLK0, nCLK1	$\mathrm{V}_{\text {DD }}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			5	$\mu \mathrm{A}$
		CLK0, CLK1	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			150	$\mu \mathrm{A}$
${ }^{1 / 2}$	Input Low Current	nCLK0, nCLK1	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {iN }}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$
		CLK0, CLK1	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {iN }}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
V_{PP}	Peak-to-Peak Input Voltage			0.15		1.3	V
$\mathrm{V}_{\text {CMR }}$	Common Mode Input Voltage; NOTE 1, 2			0.5		$V_{D D}-0.85$	V

NOTE 1: For single ended applications the maximum input voltage for CLK0, nCLK0 and CLK1, nCLK1 is $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$.
NOTE 2: Common mode voltage is defined as $\mathrm{V}_{\mathbf{I H}}$.

TAble 4D. LVHSTL DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{V}_{\text {OH }}$	Output High Voltage; NOTE 1		0.7		1.0	V
$\mathrm{~V}_{\text {OL }}$	Output Low Voltage; NOTE 1		0		0.4	V
$\mathrm{~V}_{\text {SWING }}$	Peak-to-Peak Output Voltage Swing		0.4		1.0	V

NOTE 1: Outputs terminated with 50Ω to ground.

Table 5. AC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDO}}=1.8 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\mathrm{MAX}}$	Maximum Output Frequency				650	MHz
t_{PD}	Propagation Delay; NOTE 1	$f \leq 650 \mathrm{MHz}$	0.9	1.2	1.5	ns
tsk(o)	Output Skew; NOTE 2, 4				50	ps
$\mathrm{tsk}(\mathrm{pp})$	Part-to-Part Skew; NOTE 3, 4				400	ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time	20% to 80%	150		500	ps
odc	Output Duty Cycle	$f>200 \mathrm{MHz}$	45	50	55	$\%$

All parameters measured at 500 MHz unless noted otherwise.
The cycle to cycle jitter on the input will equal the jitter on the output. The part does not add jitter.
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.
Measured at output differential cross points.
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

Parameter Measurement Information

Application Information

Wiring the Differential Input to Accept Single Ended Levels

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage $\mathrm{V} _$REF $=\mathrm{V}_{\mathrm{DD}} / 2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio
of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5 V and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V} _$REF should be 1.25 V and $R 2 / R 1=0.609$.

Figure 2. Single Ended Signal Driving Differential Input

Differential Clock Input Interface

The CLK/nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both Vswing and Vон must meet the Vpp and Vcmr input requirements. Figures 3A to 3E show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are

Figure 3A. CLK/nCLK Input Driven by LVHSTL Driver

Figure 3C. CLK/nCLK Input Driven by 3.3V LVPECL Driver

Figure 3E. CLK/nCLK Input Driven by 3.3V LVPECL Driver with AC Couple
examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 4A, the input termination applies for LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

Figure 3B. CLK/nCLK Input Driven by 3.3V LVPECL DRIVER

Figure 3D. CLK/nCLK Input Driven by 3.3V LVDS Driver

Schematic Example

This application note provides general design guide using 8523I-03 LVHSTL buffer. Figure 3 shows a schematic example of the 8523I-03 LVHSTL Clock buffer. In this example, the input
is driven by an LVHSTL driver. CLK_EN is set at logic low to select CLKO/nCLKO input.

Figure 4. Example 8523I-03 LVHSTL Clock Output Buffer Schematic

Power Considerations

This section provides information on power dissipation and junction temperature for the 85231-03. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8523I-03 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+5 \%=3.465 \mathrm{~V}$, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core) $)_{\text {MAX }}=\mathrm{V}_{\text {DD_MAX }}{ }^{*} \mathrm{I}_{\text {DD_MAX }}=3.465 \mathrm{~V} * 55 \mathrm{~mA}=190 \mathrm{~mW}$
- Power (outputs) max $=\mathbf{3 2 . 8 m W} /$ Loaded Output pair

If all outputs are loaded, the total power is 4 * $32.8 \mathrm{~mW}=131 \mathrm{~mW}$

Total Power ${ }_{\text {max }}(3.465 \mathrm{~V}$, with all outputs switching $)=190 \mathrm{~mW}+131 \mathrm{~mW}=321 \mathrm{~mW}$

2. Junction Temperature.

Junction temperature, Tj , is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is $125^{\circ} \mathrm{C}$.

> The equation for Tj is as follows: $\mathrm{Tj}=\theta_{\mathrm{JA}}{ }^{*}$ Pd_total $+\mathrm{T}_{\mathrm{A}}$
> $\mathrm{Tj}=$ Junction Temperature
> $\theta \mathrm{JA}=$ Junction-to-Ambient Thermal Resistance
> Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
> $\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{Ja} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is $66.6^{\circ} \mathrm{C} / \mathrm{W}$ per Table 6 below. Therefore, Tj for an ambient temperature of $85^{\circ} \mathrm{C}$ with all outputs switching is:
$85^{\circ} \mathrm{C}+0.321 \mathrm{~W} * 66.6^{\circ} \mathrm{C} / \mathrm{W}=106.4^{\circ} \mathrm{C}$. This is well below the limit of $125^{\circ} \mathrm{C}$.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 6. Thermal Resistance 日ja for 20-pin TSSOP, Forced Convection

θ_{JA} by Velocity (Linear Feet per Minute)

Single-Layer PCB, JEDEC Standard Test Boards
Multi-Layer PCB, JEDEC Standard Test Boards

0	200	500
$114.5^{\circ} \mathrm{C} / \mathrm{W}$	$98.0^{\circ} \mathrm{C} / \mathrm{W}$	$88.0^{\circ} \mathrm{C} / \mathrm{W}$
$73.2^{\circ} \mathrm{C} / \mathrm{W}$	$66.6^{\circ} \mathrm{C} / \mathrm{W}$	$63.5^{\circ} \mathrm{C} / \mathrm{W}$

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.
LVHSTL output driver circuit and termination are shown in Figure 5.

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.
Pd_H is power dissipation when the output drives high.
$P d _L$ is the power dissipation when the output drives low.

Pd_H $=\left(V_{\text {OH_MAX }} / R_{L}\right) *\left(V_{\text {DDO_MAX }}-V_{\text {OH_maX }}\right)$
Pd_L $=\left(\mathrm{V}_{\text {OL_MAX }} / \mathrm{R}_{\mathrm{L}}\right) *\left(\mathrm{~V}_{\text {DDO_MAX }}-\mathrm{V}_{\text {OL_MAX }}\right)$
$\mathrm{Pd} _\mathrm{H}=(1 \mathrm{~V} / 50 \Omega)$ * $(2 \mathrm{~V}-1 \mathrm{~V})=\mathbf{2 0 m W}$
Pd_L $=(0.4 \mathrm{~V} / 50 \Omega) *(2 \mathrm{~V}-0.4 \mathrm{~V})=12.8 \mathrm{~mW}$
Total Power Dissipation per output pair $=$ Pd_H + Pd_L $=32.8 \mathrm{~mW}$

Reliability Information

Table 7. $\theta_{\text {JA }}$ vs. Air Flow Table for 20 Lead TSSOP

θ_{JA} by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	$114.5^{\circ} \mathrm{C} / \mathrm{W}$	$98.0^{\circ} \mathrm{C} / \mathrm{W}$	$88.0^{\circ} \mathrm{C} / \mathrm{W}$
Multi-Layer PCB, JEDEC Standard Test Boards	$73.2^{\circ} \mathrm{C} / \mathrm{W}$	$66.6^{\circ} \mathrm{C} / \mathrm{W}$	$63.5^{\circ} \mathrm{C} / \mathrm{W}$

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Transistor Count

The transistor count for $85231-03$ is: 472

Package Outline - G Suffix for 20 Lead TSSOP

Table 8. Package Dimensions

SYMBOL	Millimeters	
	Minimum	Maximum
N	20	
A	--	1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	6.40	6.60
E	4.30	6.40 BASIC
E1	0.45	4.50
e	0°	0.65 BASIC
L	--	8°
α	aaa	0.10

Reference Document: JEDEC Publication 95, MS-153

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8523AGI-03LN	ICS8523AIO3L	20 lead "Lead-Free" TSSOP	tube	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
8523AGI-03LNT	ICS8523AIO3L	20 lead "Lead-Free" TSSOP	Tape and Reel	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date
A	T9	1		
8				
14	Features section - added Lead-Free bullet. Updated Differential Clock Input Interface section and deleted LVPECL Clock Input Interface section. Added Lead-Free marking to Ordering Information table.	$9 / 13 / 04$		
A	T9	14	Ordering Information Table - corrected Lead-Free Part Number from "LF" to "LN".	$10 / 5 / 04$
A	T9	14	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	$8 / 12 / 10$
A	T9	14	Ordering Information - removed leaded devices. Updated data sheet format.	$11 / 9 / 15$

Renesas

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0
CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 6ES7231-4HD32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9513BCPZ AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI

