General Description

The 8530 is a low skew, 1-to-16 Differential-to- 2.5V LVPECL Fanout Buffer. The CLK, nCLK pair can accept most standard differential input levels. The high gain differential amplifier accepts peak-to-peak input voltages as small as 150 mV , as long as the common mode voltage is within the specified minimum and maximum range.

Guaranteed output and part-to-part skew characteristics make the 8530 ideal for those clock distribution applications demanding well defined performance and repeatability.

Features

- Sixteen differential LVPECL output pairs
- CLK, nCLK input pair
- CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL
- Maximum output frequency: 500 MHz
- Translates any single-ended input signal to 2.5V LVPECL levels with a resistor bias on nCLK input
- Output skew: 50ps (maximum)
- Part-to-part skew: 250ps (maximum)
- Propagation delay: 2ns (maximum)
- 3.3 V core, 2.5 V output operating supply
- $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

Table 1. Pin Descriptions

Number	Name	Type		Description
1, 11, 14, 24, 25, 35, 38, 48	$\mathrm{V}_{\text {CCO }}$	Power		Output power supply pins.
2, 3	Q11, nQ11	Output		Differential output pair. LVPECL interface levels.
4,5	Q10, nQ10	Output		Differential output pair. LVPECL interface levels.
6, 19, 30, 43	V_{EE}	Power		Negative power supply pins.
7, 8	Q9, nQ9	Output		Differential output pair. LVPECL interface levels.
9, 10	Q8, nQ8	Output		Differential output pair. LVPECL interface levels.
12, 13	V_{CC}	Power		Positive power supply pins.
15, 16	Q7, nQ7	Output		Differential output pair. LVPECL interface levels.
17, 18	Q6, nQ6	Output		Differential output pair. LVPECL interface levels.
20, 21	Q5, nQ5	Output		Differential output pair. LVPECL interface levels.
22, 23	Q4, nQ4	Output		Differential output pair. LVPECL interface levels.
26, 27	Q3, nQ3	Output		Differential output pair. LVPECL interface levels.
28, 29	Q2, nQ2	Output		Differential output pair. LVPECL interface levels.
31, 32	Q1, nQ1	Output		Differential output pair. LVPECL interface levels.
33, 34	Q0, nQ0	Output		Differential output pair. LVPECL interface levels.
36	CLK	Input	Pulldown	Non-inverting differential clock input.
37	nCLK	Input	Pullup	Inverting differential clock input.
39, 40	Q15, nQ15	Output		Differential output pair. LVPECL interface levels.
41.42	Q14, nQ14	Output		Differential output pair. LVPECL interface levels.
44, 45	Q13, nQ13	Output		Differential output pair. LVPECL interface levels.
46, 47	Q12, nQ12	Output		Differential output pair. LVPECL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4		pF
$\mathrm{R}_{\text {PULLUP }}$	Input Pullup Resistor			51		$\mathrm{k} \Omega$
$\mathrm{R}_{\text {PULLDOWN }}$	Input Pulldown Resistor			51		$\mathrm{k} \Omega$

Function Table

Table 3. Clock Input Function Table

Inputs		Outputs			Polarity
CLK	nCLK	Q[0:15]	nQ[0:15]	Input to Output Mode	
0	1	LOW	HIGH	Differential to Differential	Non-Inverting
1	0	HIGH	LOW	Differential to Differential	Non-Inverting
0	Biased; NOTE 1	LOW	HIGH	Single-Ended to Differential	Non-Inverting
1	Biased; NOTE 1	HIGH	LOW	Single-Ended to Differential	Nolen
Biased; NOTE 1	0	HIGH	LOW	Single-Ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single-Ended to Differential	Inverting

NOTE 1: Refer to the Application Information section, Wiring the Differential Input to Accept single-ended Levels.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{CC}	4.6 V
Inputs, V_{I}	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Outputs, I_{O}	
Continuous Current	50 mA
Surge Current	100 mA
Package Thermal Impedance, θ_{JA}	$47.9^{\circ} \mathrm{C} / \mathrm{W}(0 \mathrm{Ifpm})$
Storage Temperature, $\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CCO}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{CC}	Positive Supply Voltage		3.135	3.3	3.465	V
$\mathrm{~V}_{\mathrm{CCO}}$	Output Supply Voltage		2.375	25	2.625	V
I_{EE}	Power Supply Current				150	mA

Table 4B. Differential Input DC Characteristics, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CCO}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I_{IH}	Input High Current	CLK				150	$\mu \mathrm{A}$
		nCLK				5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	CLK		-5			$\mu \mathrm{A}$
		nCLK		-150			$\mu \mathrm{A}$
V_{PP}	Peak-to-Peak Input Voltage			0.15		1.3	V
$V_{\text {CMR }}$	Common Mode Input Voltage; NOTE 1			0.05		$\mathrm{V}_{\mathrm{CC}}-0.85$	V

NOTE 1: Common mode input voltage is defined as V_{IH}.
Table 4C. LVPECL DC Characteristics, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CCO}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage; NOTE 1		$\mathrm{V}_{\mathrm{CCO}}-1.1$		$\mathrm{~V}_{\mathrm{CCO}}-0.7$	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage; NOTE 1		$\mathrm{V}_{\mathrm{CCO}}-2.0$		$\mathrm{~V}_{\mathrm{CCO}}-1.4$	V
$\mathrm{~V}_{\text {SWING }}$	Peak-to-Peak Output Voltage Swing		0.55		0.93	V

NOTE 1: Outputs terminated with 50Ω to $\mathrm{V}_{\mathrm{CCO}}-2 \mathrm{~V}$.

AC Electrical Characteristics

Table 5. AC Electrical Characteristics, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CCO}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\mathrm{MAX}}$	Output Frequency				500	MHz
t_{PD}	Propagation Delay; NOTE 1	$f \leq 500 \mathrm{MHz}$	1		2	ns
$t \mathrm{tsk}(0)$	Output Skew; NOTE 2, 3			26	50	ps
$t_{\mathrm{sk}(\mathrm{pp})}$	Part-to-Part Skew; NOTE 2, 4				250	ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/ Fall Time	20% to $80 \% @ 50 \mathrm{MHz}$	300		700	ps
odc	Output Duty Cycle		47	50	53	$\%$

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. Device will meet specifications after thermal equilibrium has been reached under these conditions.
NOTE All parameters measured at 250 MHz unless noted otherwise.
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points.
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

Renesns

Parameter Measurement Information

3.3V Core/ 2.5V LVPECL Output Load AC Test Circuit

Output Skew

Output Duty Cycle/Pulse Width/Period

Differential Input Level

Part-to-Part Skew

Propagation Delay

Parameter Measurement Information, continued

Output Rise/Fall Time

Applications Information

Recommendations for Unused Output Pins

Outputs:

LVPECL Outputs
The unused LVPECL output pair can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}} / 2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the $\mathrm{V}_{\text {REF }}$ in the center of the input voltage swing. For example, if the input clock swing is 2.5 V and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, $R 1$ and $R 2$ value should be adjusted to set $V_{\text {REF }}$ at 1.25 V . The values below are for when both the single ended swing and V_{CC} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission
line impedance. For most 50Ω applications, R3 and R4 can be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3 V and $\mathrm{V}_{I H}$ cannot be more than $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both $\mathrm{V}_{\text {SWING }}$ and V_{OH} must meet the V_{PP} and $\mathrm{V}_{\text {CMR }}$ input requirements. Figures 2 A to 2 F show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult

Figure 2A. CLK/nCLK Input Driven by an IDT LVHSTL Driver

Figure 2C. CLK/nCLK Input
Driven by a 3.3V LVPECL Driver

Figure 2E. CLK/nCLK Input Driven by a 3.3V HCSL Driver
with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 2A, the input termination applies for IDT LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

Figure 2B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 2D. CLK/nCLK Input Driven by a 3.3V LVDS Driver

Figure 2F. CLK/nCLK Input Driven by a 2.5V SSTL Driver

Termination for 2.5V LVPECL Outputs

Figure $3 A$ and Figure $3 B$ show examples of termination for 2.5 V LVPECL driver. These terminations are equivalent to terminating 50Ω to $\mathrm{V}_{\mathrm{CCO}}-2 \mathrm{~V}$. For $\mathrm{V}_{\mathrm{CCO}}=2.5 \mathrm{~V}$, the $\mathrm{V}_{\mathrm{CCO}}-2 \mathrm{~V}$ is very close to ground

Figure 3A. 2.5V LVPECL Driver Termination Example

level. The R3 in Figure 3B can be eliminated and the termination is shown in Figure 3C.

Figure 3B. 2.5V LVPECL Driver Termination Example

Renesns

Power Considerations

This section provides information on power dissipation and junction temperature for the 8530.
Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8530 is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}+5 \%=3.465 \mathrm{~V}$, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core) MAX $=\mathrm{V}_{\text {CC_MAX }}{ }^{*} \mathrm{E}_{\text {EE_MAX }}=3.465 \mathrm{~V} * 150 \mathrm{~mA}=519.75 \mathrm{~mW}$
- Power (outputs) MAX $=35 \mathrm{~mW} /$ Loaded Output pair

If all outputs are loaded, the total power is 16 * $35 \mathrm{~mW}=560 \mathrm{~mW}$
Total Power_MAX $(3.465 \mathrm{~V}$, with all outputs switching $)=519.75 \mathrm{~mW}+560 \mathrm{~mW}=1079.75 \mathrm{~mW}$

2. Junction Temperature.

Junction temperature, Tj , is the temperature at the junction of the bond wire and bond pad and it directly affects the reliability of the device. The maximum recommended junction temperature is $125^{\circ} \mathrm{C}$. Limiting the internal transistor junction temperature, Tj, to $125^{\circ} \mathrm{C}$ ensures that the bond wire and bond pad temperature remains below $125^{\circ} \mathrm{C}$.

The equation for Tj_{j} is as follows: $\mathrm{Tj}=\theta_{\mathrm{JA}}{ }^{*} \mathrm{Pd}$ _total $+\mathrm{T}_{\mathrm{A}}$
$\mathrm{Tj}=$ Junction Temperature
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is $47.9^{\circ} \mathrm{C} / \mathrm{W}$ per Table 6 below.

Therefore, Tj for an ambient temperature of $70^{\circ} \mathrm{C}$ with all outputs switching is:

$$
70^{\circ} \mathrm{C}+1.080 \mathrm{~W} * 47.9^{\circ} \mathrm{C} / \mathrm{W}=121.7^{\circ} \mathrm{C} . \text { This is below the limit of } 125^{\circ} \mathrm{C} .
$$

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 48 Lead LQFP, Forced Convection

$\theta_{\text {JA }}$ by Velocity			
Linear Feet per Minute	$\mathbf{0}$	$\mathbf{2 0 0}$	$\mathbf{5 0 0}$
Single-Layer PCB, JEDEC Standard Test Boards	$67.8^{\circ} \mathrm{C} / \mathrm{W}$	$55.9^{\circ} \mathrm{C} / \mathrm{W}$	$50.1^{\circ} \mathrm{C} / \mathrm{W}$
Multi-Layer PCB, JEDEC Standard Test Boards	$47.9^{\circ} \mathrm{C} / \mathrm{W}$	$42.1^{\circ} \mathrm{C} / \mathrm{W}$	$39.4^{\circ} \mathrm{C} / \mathrm{W}$

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Renesns

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pairs.
LVPECL output driver circuit and termination are shown in Figure 4.

Figure 4. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $\mathrm{V}_{\mathrm{CCO}}-2 \mathrm{~V}$.

- For logic high, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OH_MAX }}=\mathrm{V}_{\text {CCO_MAX }}-\mathbf{0 . 7} \mathrm{V}$ $\left(\mathrm{V}_{\text {CCO_MAX }}-\mathrm{V}_{\text {OH_MAX }}\right)=\mathbf{0 . 7 V}$
- \quad For logic low, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OL_MAX }}=\mathrm{V}_{\text {CCO_MAX }}-\mathbf{1 . 4 V}$ $\left(\mathrm{V}_{\text {CCO_MAX }}-\mathrm{V}_{\text {OL_MAX }}\right)=\mathbf{1 . 4 V}$
$\mathrm{Pd} _\mathrm{H}$ is power dissipation when the output drives high.
$\mathrm{Pd} _\mathrm{L}$ is the power dissipation when the output drives low.
 $[(2 \mathrm{~V}-0.7 \mathrm{~V}) / 50 \Omega]$ * $0.7 \mathrm{~V}=18.2 \mathrm{~mW}$
 $[(2 \mathrm{~V}-1.4 \mathrm{~V}) / 50 \Omega]$ * $1.4 \mathrm{~V}=16.8 \mathrm{~mW}$

Total Power Dissipation per output pair = Pd_H + Pd_L = 35mW

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 48 Lead LQFP

θ_{JA} vs. Air Flow			
Linear Feet per Minute	$\mathbf{0}$	$\mathbf{2 0 0}$	$\mathbf{5 0 0}$
Single-Layer PCB, JEDEC Standard Test Boards	$67.8^{\circ} \mathrm{C} / \mathrm{W}$	$55.9^{\circ} \mathrm{C} / \mathrm{W}$	$50.1^{\circ} \mathrm{C} / \mathrm{W}$
Multi-Layer PCB, JEDEC Standard Test Boards	$47.9^{\circ} \mathrm{C} / \mathrm{W}$	$42.1^{\circ} \mathrm{C} / \mathrm{W}$	$39.4^{\circ} \mathrm{C} / \mathrm{W}$

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Transistor Count

The transistor count for 8530 is: 930

Renesns

Package Outline and Package Dimensions

Package Outline - Y Suffix for 48 Lead LQFP

Table 8. Package Dimensions for 48 Lead LQFP

JEDEC Variation: BCB - HD All Dimensions in Millimeters			
Symbol	Minimum	Nominal	Maximum
N	48		
A			1.60
A1	0.05	0.10	0.15
A2	1.35	1.40	1.45
b	0.17	0.22	0.27
c	0.09		0.20
D \& E	9.00 Basic		
D1 \& E1	7.00 Basic		
D2 \& E2	5.50 Ref.		
e	0.5 Basic		
L	0.45	0.60	0.75
θ	0°		7°
ccc			0.08

Reference Document: JEDEC Publication 95, MS-026

Renesns

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8530DYLF	ICS8530DYLF	Lead-Free, 48 Lead LQFP	Tray	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
8530DYLFT	ICS8530DYLF	Lead-Free, 48 Lead LQFP	2500 Tape \& Reel, pin 1 orientation: EIA-481-C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
8530DYLF/W	ICS8530DYLF	Lead-Free, 48 Lead LQFP	2500 Tape \& Reel, pin 1 orientation EIA-481-D	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Table 10. Pin 1 Orientation in Tape and Reel Packaging

Part Number Suffix	Pin 1 Orientation	Illustration
8	Quadrant 1 (EIA-481-C)	
/W	Quadrant 2 (EIA-481-D)	

Revision History Sheet

Rev	Table	Page	Description of Change	Date
C		$\begin{gathered} 5-6 \\ 7 \end{gathered}$	Updated figures. Added Termination for LVPECL Outputs section.	5/28/02
C		5	Output Load Test Circuit - corrected VEE equation to read: "" $\mathrm{V}_{\mathrm{EE}}=-0.5 \mathrm{~V} \pm 0.165 \mathrm{~V}$ " from " " $\mathrm{V}_{\mathrm{EE}}=-0.5 \mathrm{~V} \pm 0.135 \mathrm{~V}$ " ".	10/2/02
D	$\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 4 \mathrm{C} \end{gathered}$	$\begin{gathered} 2 \\ 3 \\ \\ 5 \\ \\ 6 \\ 6 \\ 7 \\ 8-9 \end{gathered}$	Pin Characteristics - changed $\mathrm{C}_{\mathrm{IN}} 4 \mathrm{pF}$ max. to 4 pF typical. LVPECL Characteristics - changed V_{OH} from $\mathrm{V}_{\mathrm{CCO}}-1.4 \mathrm{~V}$ min. to $\mathrm{V}_{\mathrm{CCO}}-1.1 \mathrm{~V}$ min. Changed $\mathrm{V}_{\mathrm{CCO}}-1.0 \mathrm{~V}$ max. to $\mathrm{V}_{\mathrm{CCO}}-0.7 \mathrm{~V}$ max. Changed V_{OL} from $\mathrm{V}_{\mathrm{CCO}}-1.7 \mathrm{~V}$ max. to $\mathrm{V}_{\mathrm{CCO}}-1.4 \mathrm{~V}$ max. Output Load Test Circuit - corrected V_{EE} equation to read: " " $V_{E E}=-0.5 \mathrm{~V} \pm 0.125 \mathrm{~V} "$ " from " " $\mathrm{V}_{\mathrm{EE}}=-0.5 \mathrm{~V} \pm 0.165 \mathrm{~V} "$ ". Corrected V_{CC} equation to read "" $\mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V} \pm 0.04 \mathrm{~V}$ " from "" $\mathrm{V}_{\mathrm{CC}}=2.8 \mathrm{~V}$ "". Updated Figure 1, Single Ended Signal Driving Differential Input diagram. Updated Figures 2A and 2B, LVPECL Output Termination diagrams. Added Differential Clock Input Interface section. Adjusted worse case power dissipation to reflect $\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$. Updated format throughout datasheet.	11/20/03
E	T4A	3	Power Supply Table - changed $\mathrm{I}_{\text {EE }}$ max. from 115 mA to 125 mA .	12/2/03
E	T4B T9	$\begin{gathered} 4 \\ 6 \\ 7 \\ 9 \\ 14 \end{gathered}$	Differential DC Characteristics Table - updated notes. Added Recommendations for Unused Output Pins section. Updated Wiring the Differential Input to Accept Single-ended Levels section. Updated Termination for LVPECL Outputs section. Ordering Information Table - deleted "ICS" prefix from part/order column. Added lead-free marking. Converted datasheet format.	9/15/10
F	T4A	$\begin{gathered} 3 \\ 10 \end{gathered}$	Power Supply DC Characteristics Table - changed $\mathrm{I}_{\mathrm{EE}} \mathrm{spec}$ to 150 mA maximum. Power Considerations, updated calculations to coincide with new I_{EE} spec.	10/11/11
G	T10	14	Added Pin 1 Orientation in Tape and Reel Packaging Table.	6/26/15

Renesas

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C EC4P-221MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 6ES7231-4HD32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9513BCPZ AD9514BCPZ AD9514BCPZ-REEL7 $\underline{\text { AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ }}$ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI

