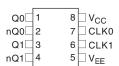
DATASHEET

General Description

The ICS85322I is a Dual LVCMOS / LVTTL-to- Differential 2.5V / 3.3V LVPECL translator. The ICS85322I has selectable single ended clock inputs. The single ended clock input accepts LVCMOS or LVTTL input levels and translate them to 2.5V / 3.3V LVPECL levels. The small outline 8-pin SOIC or TSSOP package makes this device ideal for applications where space, high performance and low power are important.

Features


- Two differential 2.5V/3.3V LVPECL outputs
- Selectable CLK0, CLK1 LVCMOS/LVTTL clock inputs
- CLK0 and CLK1 can accepts the following input levels: LVCMOS or LVTTL
- Maximum output frequency: 267MHz
- Part-to-part skew: 250ps (maximum)
- 3.3V operating supply voltage (operating range 3.135V to 3.465V)
- 2.5V operating supply voltage (operating range 2.375V to 2.625V)
- -40°C to 85°C ambient operating temperature
- · Lead-free (RoHS 6) packaging

Block Diagram

Pin Assignment

1

ICS85322I 8-Lead SOIC 3.90mm x 4.92mm x 1.37mm body package M Package

8-Lead TSSOP
3.0mm x 3.0mm body package
G Package

Top View

Pin Descriptions and Characteristics

Table 1. Pin Descriptions

Number	Name	Ту	ре	Description	
1, 2	Q0, nQ0	Output		Differential output pair. LVPECL interface levels.	
3, 4	Q1, nQ1	Output		Differential output pair. LVPECL interface levels.	
5	V _{EE}	Power		Negative supply pin.	
6	CLK1	Input	Pullup	LVCMOS/LVTTL clock input.	
7	CLK0	Input	Pullup	LVCMOS/LVTTL clock input.	
8	V _{CC}	Power		Positive supply pin.	

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V
Inputs, V _I	-0.5V to V _{CC} + 0.5V
Outputs, I _O Continuous Current Surge Current	50mA 100mA
Junction Temperature, T _J	125°C
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Positive Supply Voltage		3.135	3.3	3.465	V
I _{EE}	Positive Supply Current				25	mA

Table 3B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	CLK0, CLK1		2		V _{CC} + 0.3	V
V _{IL}	Input Low Voltage	CLK0, CLK1		-0.3		1.3	V
I _{IH}	Input High Current	CLK0, CLK1	$V_{CC} = V_{IN} = 3.465V$			5	μA
I _{IL}	Input Low Current	CLK0, CLK1	$V_{CC} = V_{IN} = 3.465V$	-150			μA

Table 3C. LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1	$V_{CC} = V_{IN} = 3.465V$	V _{CC} – 1.4		V _{CC} - 0.9	V
V _{OL}	Output Low Voltage; NOTE 1	$V_{CC} = V_{IN} = 3.465V$	V _{CC} - 2.0		V _{CC} – 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.65		1.0	V

NOTE 1: Outputs terminated with 50Ω to $\mbox{V}_{\mbox{CC}}$ – 2V.

Table 3D. Power Supply DC Characteristics, V_{CC} = 2.5V \pm 5%, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Positive Supply Voltage		2.375	2.5	2.625	V
I _{EE}	Power Supply Current				25	mA

Table 3E. LVCMOS/LVTTL DC Characteristics, V_{CC} = 2.5V \pm 5%, T_A = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage	CLK0, CLK1		1.6		V _{CC} + 0.3	V
V _{IL}	Input Low Voltage	CLK0, CLK1		-0.3		0.9	V
I _{IH}	Input High Current	CLK0, CLK1	$V_{CC} = V_{IN} = 2.625V$			5	μА
I _{IL}	Input Low Current	CLK0, CLK1	$V_{CC} = V_{IN} = 2.625V$	-150			μА

Table 3F. LVPECL DC Characteristics, V_{CC} = $2.5V \pm 5\%, \, T_A$ = -40°C to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CC} – 1.4		V _{CC} - 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{CC} - 2.0		V _{CC} – 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.65		1.0	V

NOTE 1: Outputs terminated with 50 $\!\Omega$ to V $_{CC}$ – 2V.

AC Electrical Characteristics

Table 4A. AC Electrical Characteristics, $V_{CC} = 3.3V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				267	MHz
t _{PD}	Propagation Delay; NOTE 1	<i>f</i> ≤ 267MHz	0.5		1.9	ns
tsk(pp)	Part-to-Part Skew; NOTE 2, 3				250	ps
t _R / t _F	Output Rise/ Fall Time	20% to 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle		40		60	%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under t

All parameters measured at 133MHz unless noted otherwise.hese conditions.

NOTE 1: Measured from V_{CC} /2 point of the input to the differential output crosspoint.

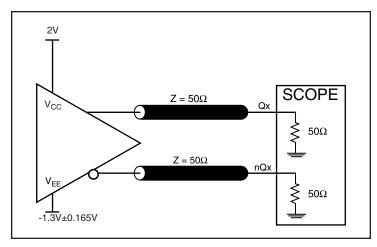
NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoints.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

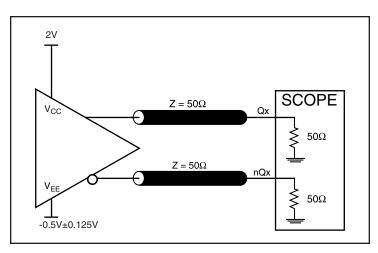
Table 4B. AC Electrical Characteristics, $V_{CC} = 2.5V \pm 5\%$, $T_A = -40$ °C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				215	MHz
t _{PD}	Propagation Delay; NOTE 1	<i>f</i> ≤ 215MHz	0.7		2.1	ns
tsk(pp)	Part-to-Part Skew; NOTE 2, 3				250	ps
t _R / t _F	Output Rise/ Fall Time	20% to 80% @ 50MHz	300		700	ps
odc	Output Duty Cycle		40		60	%

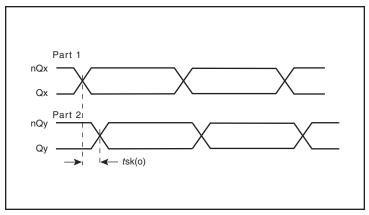
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under t

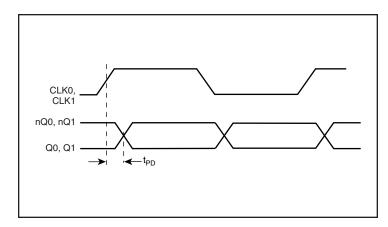

All parameters measured at 133MHz unless noted otherwise.hese conditions.

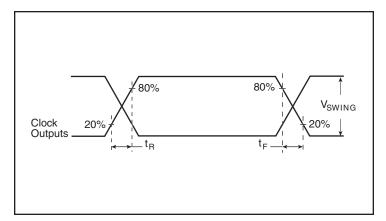
NOTE 1: Measured from V_{CC} /2 point of the input to the differential output crosspoint.


NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoints.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.


Parameter Measurement Information


3.3V LVPECL Output Load AC Test Circuit


2.5V LVPECL Output Load AC Test Circuit


Part-to-Part Skew

PROPAGATION DELAY

Output Rise/Fall Time

Output Duty Cycle/Pulse Width/Period

Applications Information

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential output is a low impedance follower output that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 1A* and *1B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

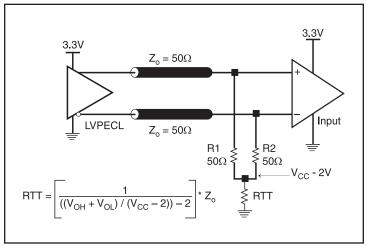


Figure 1A. 3.3V LVPECL Output Termination

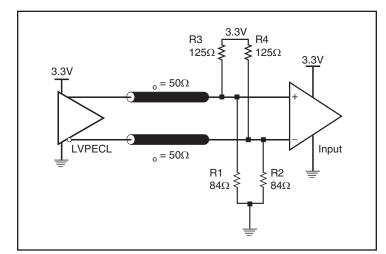


Figure 1B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 2A and Figure 2B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{CC} – 2V. For V_{CC} = 2.5V, the V_{CC} – 2V is very close to ground

level. The R3 in Figure 2B can be eliminated and the termination is shown in *Figure 2C*.

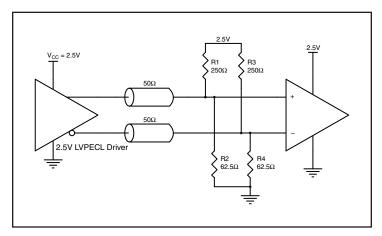


Figure 2A. 2.5V LVPECL Driver Termination Example

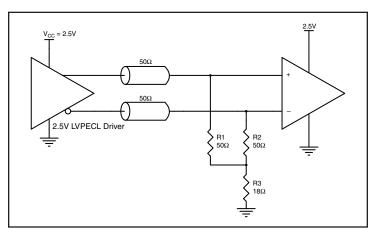


Figure 2B. 2.5V LVPECL Driver Termination Example

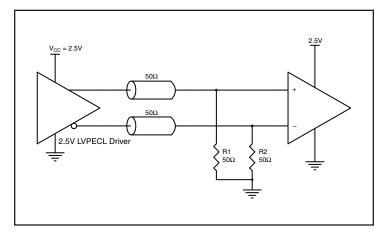


Figure 2C. 2.5V LVPECL Driver Termination Example

Power Considerations

This section provides information on power dissipation and junction temperature for the IDT85322I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the IDT85322I is the sum of the core power plus the power dissipated at the output(s).

The following is the power dissipation for $V_{CC} = 3.3V + 5\% 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated at the outputs.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 25mA = 86.6mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair
 If all outputs are loaded, the total power is 2 * 30mW = 60mW

Total Power_MAX (3.465V, with all outputs switching) = 86.6mW + 60mW = 146.6mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 157°C/W per Table 5 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.147\text{W} * 157^{\circ}\text{C/W} = 108.1^{\circ}\text{C}$. This is below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 5. Thermal Resistance θ_{JA} for 8-Lead TSSOP/SOIC

θ_{JA} by Velocity						
Meters per Second	0	1	2			
8-Lead TSSOP	157°C/W	154°C/W	151°C/W			
8-Lead SOIC	103°C/W	94°C/W	89°C/W			

NOTE: Above θ_{JA} values are the simulation result using JEDEC Standard Multi-Layer Test Board.

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation at the output(s).

LVPECL output driver circuit and termination are shown in Figure 3.

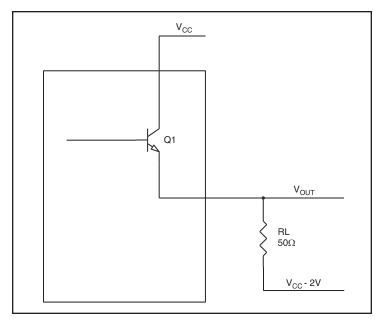


Figure 3. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation at the output(s), use the following equations which assume a 50Ω load, and a termination voltage of $V_{CC} - 2V$.

- For logic high, V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.9V
 (V_{CC_MAX} V_{OH_MAX}) = 0.9V
- For logic low, V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.7V
 (V_{CC_MAX} V_{OL_MAX}) = 1.7V

Pd_H is the power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

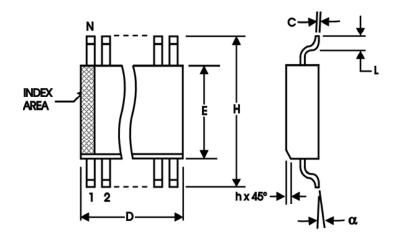
$$\begin{split} Pd_H &= [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) \\ &= [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) \\ &= [(2V - 0.9V)/50\Omega] * 0.9V = \textbf{19.8mW} \end{split}$$

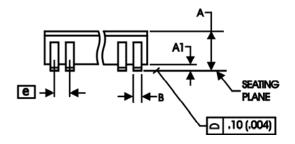
$$\begin{split} Pd_L &= [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) \\ &= [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) \\ &= [(2V - 1.7V)/50\Omega] * 1.7V = \textbf{10.2mW} \end{split}$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

Reliability Information

Table 6. $\theta_{\mbox{\scriptsize JA}}$ vs. Air Flow Table for a 8-Lead TSSOP/SOIC


θ_{JA} by Velocity			
Meters per Second	0	1	2
8-Lead TSSOP	157°C/W	154°C/W	151°C/W
8-Lead SOIC	103°C/W	94°C/W	89°C/W


NOTE: Above θ_{JA} values are the simulation result using JEDEC Standard Multi-Layer Test Board.

Transistor Count

The transistor count for the ICS85322I is: 269

8-Lead SOIC Package Outline and Dimensions

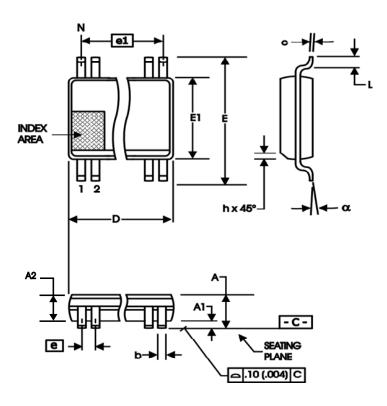


Table 8. Package Dimensions

All Dimensions in Millimeters				
Symbol	Minimum Maximum			
N	8			
Α	1.35	1.75		
A1	0.10	0.25		
В	0.33	0.51		
С	0.19	0.25		
D	4.80	5.00		
E	3.80	4.00		
е	1.27 Basic			
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.27		
α	0°	8°		

Reference Document: JEDEC Publication 95, MO-012

8-Lead TSSOP Package Outline and Dimensions

Table 8. Package Dimensions

All Dimensions in Millimeters			
Symbol	Minimum	Maximum	
Α	_	1.10	
A1	0 0.15		
A2	0.79	1.05	
С	0.08	0.23	
D	3.00 BASIC		
Е	4.90 BASIC		
E1	3.00 BASIC		
L	0.40	0.80	
	0°	8°	
aaa	_	0.10	

Variations

	mm.		
	Minimum	Maximum	
N = 8	·		
b	0.22	0.38	
е	0.65 BASIC		
e1	1.95 BASIC		
N = 10			
b	0.17	0.27	
е	0.50 BASIC		
e1	2.00 BASIC		

Reference Document: JEDEC Publication 95, MO-187

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
85322AGILF	2AIL	"Lead-Free" 8-Lead TSSOP	Tube	-40°C to 85°C
85322AGILFT	2AIL	"Lead-Free" 8-Lead TSSOP	Tape & Reel	-40°C to 85°C
85322AMILF	85322AIL	"Lead-Free" 8-Lead SOIC	Tube	-40°C to 85°C
85322AMILFT	85322AIL	"Lead-Free" 8-Lead SOIC	Tape & Reel	-40°C to 85°C

Revision History Sheet

Rev	Table	Page	Description of Change	Date
Α		8	Added Termination for LVPECL Outputs section.	
А	6 A		3.3V Output Load Test Circuit Diagram, corrected V_{EE} = -1.3V \pm 0.135V to read V_{EE} = -1.3V \pm 0.165V.	8/23/02
		7	Updated Output Rise/Fall Time Diagram.	
	T2	2	Pin Characteristics Table - changed C _{IN} 4pF max. to 4pF typical.	
3		3	Absolute Maximum Ratings, updated Inputs ratings.	
В	В 6		Updated 3.3V LVPECL Output Termination Diagrams.	10/7/03
		7	Added Termination for 2.5V LVPECL Outputs.	
			Updated format throughout data sheet.	
		1	Features Section - added lead-free bullet.	
	T2		Pin Characteristics Table - deleted RPulldown row.	
0	T3C	3	LVPECL 3.3V DC Characteristics Table -corrected V_{OH} max. from V_{CC} - 1.0V to V_{CC} - 0.9V; and V_{SWING} max. from 0.85V to 1.0V.	4/11/07
C	C T3F	4	LVPECL 2.5V DC Characteristics Table -corrected V_{OH} max. from V_{CC} - 1.0V to V_{CC} - 0.9V; and V_{SWING} max. from 0.85V to 1.0V.	4/11/07
		8 - 9	Power Considerations - corrected power dissipation to reflect V _{OH} max in Table 3C & 3F.	
	T8	12	Ordering Information Table - added lead-free part number, marking, and note.	
	Т8		Updated datasheet's header/footer with IDT from ICS.	
D		12	Removed ICS prefix from Part/Order Number column.	7/28/10
		14	Added Contact Page.	
		1	Added TSSOP package information.	
		3	Changed 'Package Thermal Impedance, θ_{JA} – 112.7°C/W (0 lfpm)' to 'Junction Temperature, T_{J} – 125°C".	
D		8	Updated Power Considerations.	3/10/14
	T5		Replaced Thermal Resistance θ_{JA} table with 8-Lead TSSOP/SOIC.	
	T6	10	Replaced θ_{JA} vs. Air Flow table with 8-Lead TSSOP/SOIC.	
		12	Added Package drawing for 8-Lead TSSOP.	

We've Got Your Timing Solution

6024 Silver Creek Valley Road San Jose, California 95138

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT

netcom@idt.com +480-763-2056

Technical Support Sales

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to signifi-

cantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third

Copyright 2014. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG
NLSX3014MUTAG NLSV4T244EMUTAG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG
NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G
74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG
CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG
NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74AVCA406LZQSR NLSX4014DTR2G
NLSX3018DTR2G LTC1045CSW#PBF LTC1045CN#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH PI4ULS3V204LE
ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3223BRJZ-REEL7
ADG3233BRMZ ADG3241BKSZ-500RL7