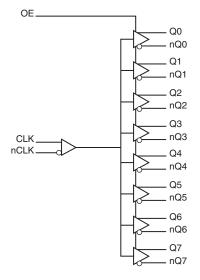
DATA SHEET

General Description


The 85408 is a low skew, high performance 1-to-8 Differential-to-LVDS Clock Distribution Chip. The 85408 CLK, nCLK pair can accept most differential input levels and translates them to 3.3V LVDS output levels. Utilizing Low Voltage Differential Signaling (LVDS), the 85408 provides a low power, low noise, low skew, point-to-point solution for distributing LVDS clock signals.

Guaranteed output and part-to-part skew specifications make the 85408 ideal for those applications demanding well defined performance and repeatability.

Features

- Eight differential LVDS output pairs
- CLK/nCLK can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL
- Maximum output frequency: 700MHz
- Translates any differential input signal (LVPECL, LVHSTL, SSTL, HCSL) to LVDS levels without external bias networks
- Translates any single-ended input signal to LVDS with resistor bias on nCLK input
- Output skew: 50ps (maximum)
- Part-to-part skew: 550ps (maximum)
- Propagation delay: 2.4ns (maximum)
- 3.3V operating supply
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

nQ6 🗆	1	24	
Q6 🗆	2	23	🗌 nQ7
nQ5 🗌	3	22	🗆 OE
Q5 🗌	4	21	GND 🗌
nQ4 🗌	5	20	🗆 Vdd
Q4 🗌	6	19	🗆 Vdd
nQ3 🗌	7	18	🗆 GND
Q3 🗖	8	17	🗆 Vdd
nQ2 🗌	9	16	🗆 CLK
Q2 🗌	10	15	nCLK
nQ1 🗌	11	14	🗆 Q0
Q1 🗌	12	13	🛛 nQ0
	P		

85408

24-Lead TSSOP 4.4mm x 7.8mm x 0.925mm package body G Package Top View

Number	Name	Г	уре	Description
1, 2	nQ6, Q6	Output		Differential output pair. LVDS interface levels.
3, 4	nQ5, Q5	Output		Differential output pair. LVDS interface levels.
5, 6	nQ4, Q4	Output		Differential output pair. LVDS interface levels.
7, 8	nQ3, Q3	Output		Differential output pair. LVDS interface levels.
9, 10	nQ2, Q2	Output		Differential output pair. LVDS interface levels.
11, 12	nQ1, Q1	Output		Differential output pair. LVDS interface levels.
13, 14	nQ0, Q0	Output		Differential output pair. LVDS interface levels.
15	nCLK	Input	Pullup	Inverting differential clock input.
16	CLK	Input	Pulldown	Non-inverting differential clock input.
17, 19, 20	V _{DD}	Power		Positive supply pins.
18, 21	GND	Power		Power supply ground.
22	OE	Input	Pullup	Output enable. Controls the enabling and disabling of outputs Qx, nQx. When HIGH, the outputs are enabled. When LOW, the outputs are in High-Impedance. LVCMOS / LVTTL interface levels.
23, 24	nQ7, Q7	Output		Differential output pair. LVDS interface levels.

Table 1. Pin Descriptions

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance (per output)			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Tables

 Table 3A. Output Enable Function Table

Inputs	Outputs	
OE	Q[0:7], nQ[0:7]	
0	High-Impedance	
1	Active (default)	

RENESAS

Table 3B. Clock Input Function Table

Inp	outs	Outputs			
CLK	nCLK	Q[0:7]	nQ[0:7]	Input to Output Mode	Polarity
0	1	LOW	HIGH	Differential to Differential	Non-Inverting
1	0	HIGH	LOW	Differential to Differential	Non-Inverting
0	Biased; NOTE 1	LOW	HIGH	Single-Ended to Differential	Non-Inverting
1	Biased; NOTE 1	HIGH	LOW	Single-Ended to Differential	Non-Inverting
Biased; NOTE 1	0	HIGH	LOW	Single-Ended to Differential	Inverting
Biased; NOTE 1	1	LOW	HIGH	Single-Ended to Differential	Inverting

NOTE 1: Please refer to the Application Information section, Wiring the Differential Input to Accept Single-Ended Levels.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{DD}	4.6V	
Inputs, V _I	-0.5V to V _{DD} + 0.5V	
Outputs, I _O (LVDS)		
Continuos Current	10mA	
Surge Current	15mA	
Package Thermal Impedance, θ_{JA}	70°C/W (0 mps)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 4A. LVDS Power Supply DC Characteristics, V_{DD} = $3.3V \pm 5\%$, T_A = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				90	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage		2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage		-0.3		0.8	V
I _{IH}	Input High Current	$V_{DD} = V_{IN} = 3.465V$			5	μA
IIL	Input Low Current	$V_{DD} = 3.465 V, V_{IN} = 0 V$	-150			μA

Table 4C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
l loout lie	Input High Current	CLK	$V_{DD} = V_{IN} = 3.465V$			150	μA
ΊΗ	Input High Current	nCLK	$V_{DD} = V_{IN} = 3.465V$			5	
		CLK	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA
Input Low Current	Input Low Current	nCLK	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA
V _{PP}	Peak-to-Peak Voltag	e; NOTE 1		0.15		1.3	V
V _{CMR}	Common Mode Inpu	t Voltage; NOTE 1, 2		GND + 0.5		V _{DD} – 0.85	V

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as V_{IH} .

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage	$R_L = 100\Omega$	250	400	600	mV
ΔV_{OD}	V _{OD} Magnitude Change	$R_L = 100\Omega$			50	mV
V _{OS}	Offset Voltage	$R_L = 100\Omega$	1.125	1.4	1.6	V
ΔV_{OS}	V _{OS} Magnitude Change	$R_L = 100\Omega$			50	mV
l _{Oz}	High Impedance Leakage		-10		+10	μA
I _{OFF}	Power Off Leakage		-1		+1	μA
I _{OSD}	Differential Output Short Circuit Current				-5.5	mA
I _{OS} /I _{OSB}	Output Short Circuit Current				-12	mA

Table 4D. LVDS DC Characteristics, V_{DD} = 3.3V \pm 5%, T_{A} = 0°C to 70°C

Table 5. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				700	MHz
t _{PD}	Propagation Delay; NOTE 1		1.6		2.4	ns
<i>t</i> jit	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	156.25MHz, Integration Range: (12kHz – 20MHz)		167		fs
<i>tsk</i> (o)	Output Skew; NOTE 2, 4				50	ps
<i>tsk</i> (pp)	Part-to-Part Skew; NOTE 3, 4				550	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	50		600	ps
odc	Output Duty Cycle		45		55	%
t _{PZL,} t _{PZH}	Output Enable Time; NOTE 5				5	ns
t _{PLZ,} t _{PHZ}	Output Disable Time; NOTE 5				5	ns

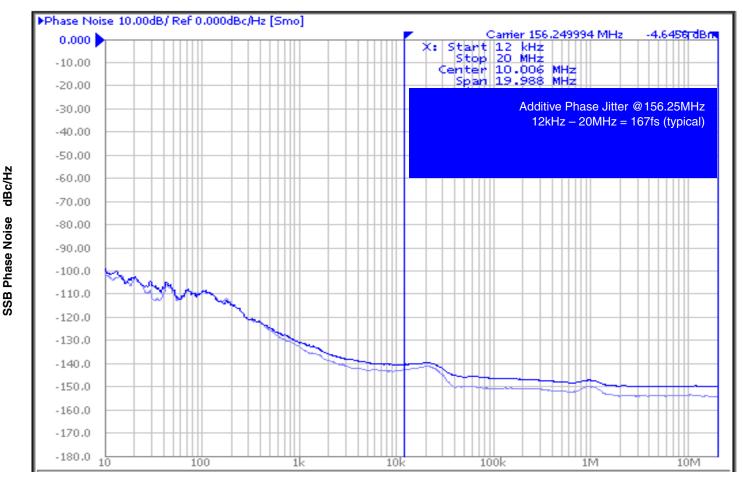
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at $f \leq 622 MHz$ unless noted otherwise.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crossing point of the input to the differential output crossing point.

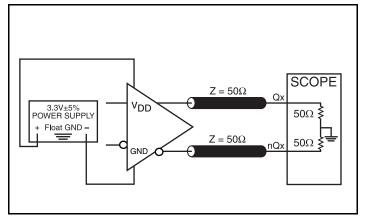
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

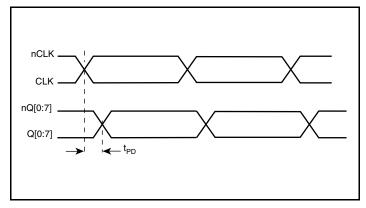

NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 5: These parameters are guaranteed by characterization. Not tested in production.

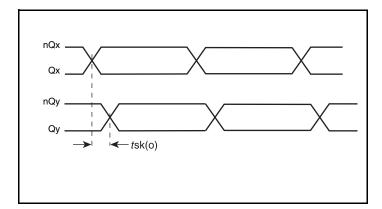
Additive Phase Jitter

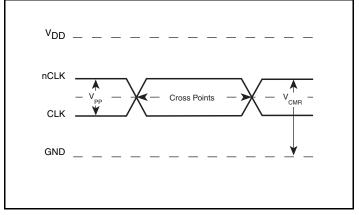
The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio

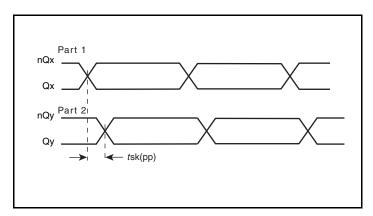

of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

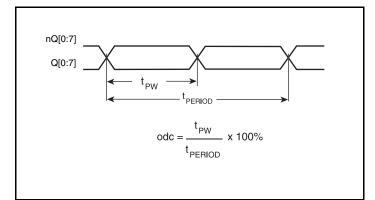

Offset from Carrier Frequency (Hz)

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

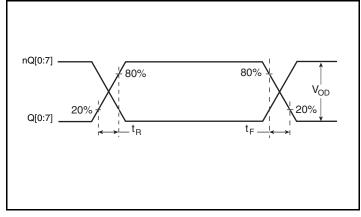

Parameter Measurement Information

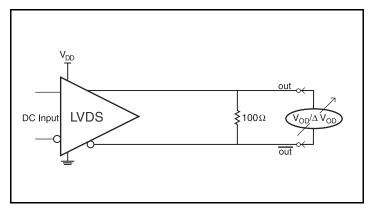

3.3V LVDS Output Load AC Test Circuit


Propagation Delay

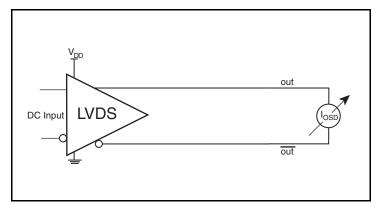


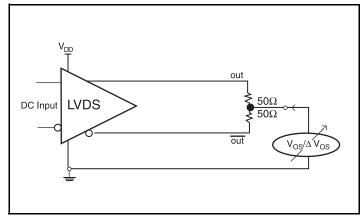
Differential Input Level

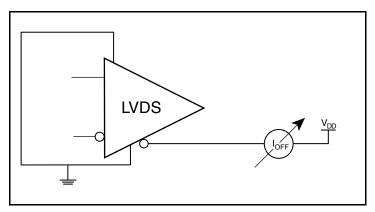


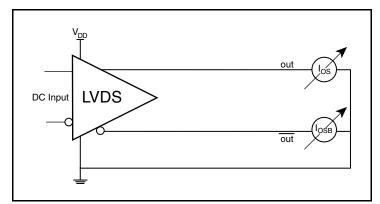

Output Duty Cycle/Pulse Width/Period

RENESAS


Parameter Measurement Information, continued


Output Rise/Fall Time


Differential Output Voltage Setup


Differential Output Short Circuit Setup

Offset Voltage Setup

Power Off Leakage Setup

Output Short Circuit Current Setup

Application Information

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how the differential input can be wired to accept single-ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

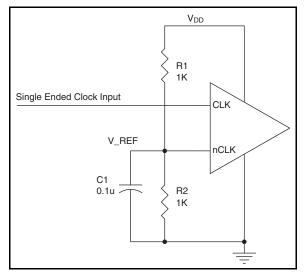
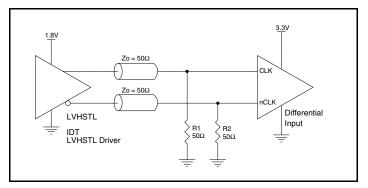


Figure 1. Single-Ended Signal Driving Differential Input

Recommendations for Unused Output Pins


Outputs:

LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, there should be no trace attached.

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2F* show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only.

2A. HiPerClockS CLK/nCLK Input Driven by an IDT Open Emitter HiPerClockS LVHSTL Driver

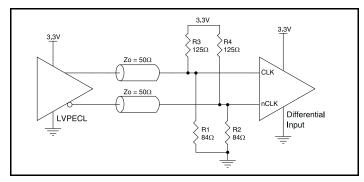


Figure 3C. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

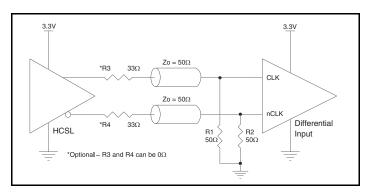


Figure 2E. HiPerClockS CLK/nCLK Input Driven by a 3.3V HCSL Driver

Please consult with the vendor of the driver component to confirm the driver termination requirements. For example, in Figure 2A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

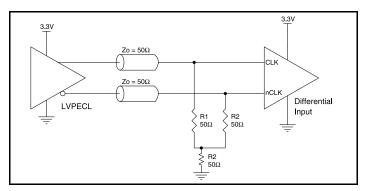


Figure 2B. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

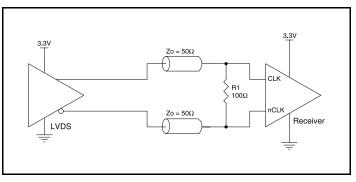


Figure 2D. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVDS Driver

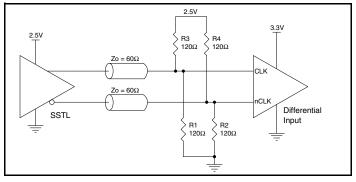


Figure 2F. HiPerClockS CLK/nCLK Input Driven by a 2.5V SSTL Driver

3.3V LVDS Driver Termination

A general LVDS interface is shown in *Figure 3*. In a 100 Ω differential transmission line environment, LVDS drivers require a matched load termination of 100 Ω across near the receiver input. For a multiple

LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.

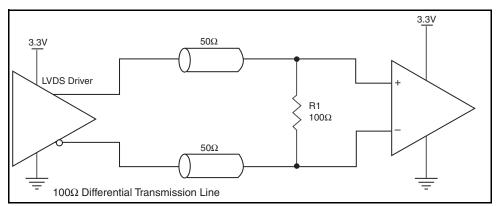


Figure 3. Typical LVDS Driver Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the 85408. Equations and example calculations are also provided.

1. Power Dissipation.

•

The total power dissipation for the 85408 is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

Power (core)_{MAX} = V_{DD_MAX} * I_{DD_MAX} = 3.465V * 90mA = **311.85mW**

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 70°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}C + 0.312W * 70^{\circ}C/W = 91.8^{\circ}C$. This is well below the limit of $125^{\circ}C$.

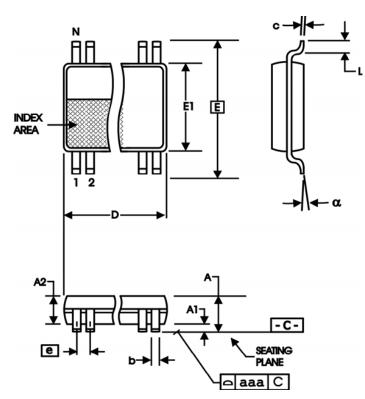
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 24 Lead TSSOP, Forced Convection

θ _{JA} by Velocity					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	70°C/W	65.0°C/W	62°C/W		

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 24 Lead TSSOP


θ _{JA} by Velocity			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	70°C/W	65.0°C/W	62°C/W

Transistor Count

The transistor count for 85408 is: 1821 Pin compatible with SN65LVDS104

Package Outline and Package Dimensions

Package Outline - G Suffix for 24 Lead TSSOP

All Dimensions in Millimeters			
Symbol	Minimum Maximum		
A2	0.80	1.05	
b	0.19	0.30	
C	0.09	0.20	
D	7.70	7.90	
E	6.40 Basic		
E1	4.30	4.50	
e	0.65 Basic		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

Table 8. Package Dimensions

All Dimensions in Millimeters			
Symbol	Minimum Maximum		
Ν	16		
Α		1.20	
A1	0.05	0.15	

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
85408BGLF	ICS85408BGLF	"Lead-Free" 24 Lead TSSOP	Tube	0°C to 70°C
85408BGLFT	ICS85408BGLF	"Lead-Free" 24 Lead TSSOP	Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History Sheet

Rev	Table	Page	Description of Change	Date	
	T6	9	Reliability Table - revised air flow from Linear Feet per Minute to Meters per Second.		
A	A T8 11		Ordering Information Table - corrected typo in Part/Order Number from ICS8540BG to ICS85408BG.	5/6/04	
А		1	Pin Assignment - corrected package information from 300-MIL to 173-MIL.		
^		1	Features Section - added Lead-Free bullet. Corrected Block Diagram.	4/05/05	
A	Т8	11	Ordering Information Table - added Lead-Free information.	4/25/05	
А	Т8	11	Ordering Information Table - added Lead-Free part number.		
	T5	5	AC Characteristics Table - added Additive Phase Jitter spec.		
в		6	Added Additive Phase Jitter Plot.	6/24/09	
Б		12	Added Power Considerations section.	6/24/09	
			Converted datasheet format.		
		1	Features section - removed leaded device references.		
С	Т9	14	Ordering information - removed leaded devices. PDN CQ-13-02 expired.	1/5/15	
			Updated datasheet format.		

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB3N2304NZDTR2G NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7